(a2)
(a3)
(a4)
(b2) Hoofdstukken in boeken
(b3) Editor van boeken
Science Citation Index
Abstract:
The issues of biological and genetic diversity management in agroforestry are extremely complex. This paper focuses on genetic diversity management and its implications for sustainable agroforestry systems in the tropics, and presents an analysis of the role and importance of inter- and intra-specific diversity in agroforestry. Diversity within and between tree species in traditional agroforestry systems and modern agroforestry technologies in the tropics is assessed, with a view to understanding the functional elements within them and assessing the role and place of diversity. The assessment shows that although the practice of agroforestry has been a diversity management and conservation system, research in agroforestry over time has de-emphasized the diversity element; nevertheless farmers do value diversity and do manage agroforestry from that perspective. Based on a profiling of various traditional agroforestry systems and research-developed technologies, a strong case is made for increased species- and genetic diversity, at both inter- and intra-specific levels. The review and analysis point to the need for increased awareness, training/education, partnerships and collaborative efforts in support of genetic diversity in agroforestry systems; of special importance is increased cross-disciplinary research.
Abstract:
The chloroplast and mitochondrial DNA diversity of 61 genotypes belonging to 18 Vasconcellea species, the so-called highland papayas, was studied by PCR-RFLP analysis of two non-coding cpDNA regions (trnM-rbcL and trnK1-trnK2) and one non-coding mtDNA region (nad4/1-nad4/2). This sample set was supplemented with six genotypes belonging to three other Caricaceae genera: the monotypic genus Carica, including only the cultivated papaya, and the genera Jacaratia and Cylicomorpha. Moringa ovalifolia was added as an outgroup species. The PCR-amplified cpDNA regions were digested with 18 restriction endonucleases, the mtDNA region with 11. A total of 22 point mutations and four insertion/deletions were scored in the sample. A higher level of interspecific variation was detected in the two cpDNA regions in comparison to the analysis of the mtDNA. Wagner parsimony and Neighbor-Joining analysis resulted in dendrograms with similar topologies. PCR-RFLP analysis supported the monophyly of Caricaceae, but among the 26 mutations scored, an insufficient number of markers discriminated between the different Caricaceae genera included in this study. Hence the inference of the intergeneric relationships within Caricaceae was impossible. However, some conclusions can be noted at a lower taxonomic level. The Caricaceae species were divided into two lineages. One group included only Vasconcellea spp., whereas the second included the remaining Vasconcellea spp., together with the papaya genotypes and those from the other Caricaceae genera. This may indicate a higher level of inter-fertility for the Vasconcellea species from the latter clade in interspecific crossings with papaya. The putative progenitors of the natural sterile hybrid V. x heilbornii, i.e. V. stipulata and V. cundinamarcensis, were only distantly related to V. x heilbornii. This indicates that probably none of these species was involved as the maternal progenitor in the origin of V. x heilbornii. Surprisingly, V. x heilbornii had organellar genome patterns identical with V. weberbaueri, suggesting a possible involvement of this species in the origin of V. x heilbornii. On the basis of discrepancy between morphological traits and the cpDNA profiles of some pairs of Vasconcellea species, we believe that besides V. x heilbornii, some other species have originated through interspecific hybridization. A reticulate evolution for Vasconcellea has therefore been suggested. Finally, intraspecific cpDNA variation was detected in V. microcarpa, thus providing molecular evidence for the high diversity previously indicated by morphological observations.