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ABSTRACT 

 

Every time a farmer plants and harvests a crop, this represents a unique experiment. The premise of 

the present research is that, if it were possible to characterise the production system in terms of 

management and environmental conditions, and if information on the harvested product were 

collected from a large enough number of harvesting events under varying conditions, it should be 

possible to develop analytical approaches that would be able to adequately describe the production 

system. This is the approach used in operational research, in which mathematical models of 

observed processes identify what parts in the approach should be modified to optimize the system. 

 

Information on cropping events of sugarcane growers in the Valle del Cauca department in Colombia 

and compiled by the Centro Colombiano de Investigación de la Caña de Azúcar (CENICAÑA), was 

used to develop data-driven models that were then applied to two under-researched crops in 

Colombia: Andean blackberry (Rubus glaucus Benth) and lulo (Solanum quitoense Lam).  

 

The research integrates information collected from small-scale growers, publicly-available 

environmental databases, and mathematical techniques to develop a site-specific approach for these 

crops. The work takes into account farmers’ production experiences over a wide range of 

environmental and socio-economic circumstances, which should allow us to identify the combination 

of factors which contribute to high productivity. Data was collected involving farmers, consistent with 

the principles of operational and participatory research. The organization of crops’ supply chains was 

strongly associated with the processes of collecting, managing and analyzing information.  

 

The modelling tools developed using the sugarcane data, explained almost 90% of the yield variation 

of Rubus glaucus and were used to (a) identify factors explaining productivity by using a relevance 

metric known as sensitivity matrix; and (b) visualize the relations between the relevant variables using 

non-supervised clustering algorithm. 

 

With Solanum quitoense, an iterative procedure was used that (a) identifies the variables that best 

explain most yield variation; (b) clusters similar environments using a neural network; and (c) 

analyses the effect of environment, cultural factors associated with a geographical area, and farm 

management skills in a mixed model, which explained more than 80 % of yield variation. 

 

Best conditions for Rubus glaucus are: an average temperature of the first month before harvest of 

16–18°C, minimal effective soil depth of about 65 cm, and low rainfall during the month before 

harvest where drainage is poor, or moderate to low rainfall in better-drained areas. The best 
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conditions for Solanum quitoense are: an average temperature of the harvest month of 15.8–19°C, 

soil depth 40–67 cm, and terrain slope of 13–24°. Proxies for crop management and socio-economic 

circumstances were integrated in the present study, as a location effect on yield was evidenced 

through the modelling, suggesting the influence of variables that were not possible to capture during 

the data collection. For instance, there was not enough information to identify management and social 

factors associated with high yields, although there were farms with yields higher than the average 

suggesting that they were managing the crop more efficiently. 

 

Our results offer the possibility to identify management practices used by productive farmers, and 

extend them to less-productive farmers, so that they too can improve their yields and implement site-

specific recommendations from their colleagues. 

 

The study shows that analysis and interpretation of farmers’ production experiences, combined with 

data of growing conditions, can provide useful information on where and how to grow both Rubus 

glaucus and Solanum quitoense. Operational and participatory research methodologies and farmers’ 

production experiences are a promising tool to develop site-specific crop production for under-

researched tropical fruit species. This is especially important in Colombia because of the lack of 

research on crops in general, and the extremely heterogeneous growing environments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

RESUMEN 

 

Cada vez que un agricultor siembra y cosecha un cultivo, realiza un experimento irrepetible o evento 

único. La premisa de la presente investigación es que, si fuera posible caracterizar el sistema de 

producción agrícola de los agricultores, en términos de las prácticas de manejo implementadas y las 

condiciones ambientales, y que si información sobre las cosechas se obtuviera a partir de un número 

suficiente de eventos llevados a cabo bajo diferentes condiciones; debería ser posible desarrollar 

enfoques analíticos con la capacidad de describir adecuadamente el sistema de producción.  

 

Éste es el enfoque utilizado en la investigación operativa, en el cual, modelos matemáticos son 

desarrollados a partir de observaciones para identificar que partes del enfoque deben ser 

modificadas y de ésta manera optimizar el sistema. Información sobre eventos de cosecha de caña 

de azúcar en el Valle del Cauca en Colombia registrada por el Centro de Investigación de la Caña de 

Azúcar de Colombia (CENICAÑA), ha sido empleada para desarrollar modelos basados en los datos 

que han sido aplicados a dos cultivos poco investigados en Colombia: mora de los Andes (Rubus 

glaucus Benth) y lulo (Solanum quitoense Lam). 

 

La investigación integra información recopilada por agricultores de pequeña escala, bases de datos 

meteorológicas de libre acceso, y técnicas matemáticas, con el objetivo de desarrollar un enfoque 

específico por sitio para estos cultivos. El estudio toma en cuenta las experiencias productivas de los 

agricultores, llevadas a cabo bajo diferentes condiciones ambientales y socio-económicas, las cuales 

nos permitirán identificar la combinación de factores que conducen a una alta productividad. Los 

datos fueron colectados involucrando a los agricultores, y en el proceso se tuvieron en cuenta 

principios de la investigación operativa y participativa. La organización de las cadenas de 

abastecimiento de los cultivos parece estar fuertemente ligada a los procesos de recolección, manejo 

y análisis de información. 

 

Las herramientas de modelado desarrolladas a partir de información de la caña de azúcar, explicaron 

casi el 90% de la variación del rendimiento de Rubus glaucus y fueron empleadas para (a) identificar 

los factores que explican la productividad mediante el uso de una métrica de relevancia conocida 

como matriz de sensibilidad, y (b) visualizar las relaciones entre la variables más relevantes a través 

de un algoritmo no supervisado. 

 

En el caso Solanum quitoense, un proceso iterativo se utilizó para (a) identificar los factores que 

mejor explican la variación en el rendimiento, (b) agrupar condiciones ambientales similares a través 

de una red neuronal, y (c) analizar el efecto del ambiente, factores culturales asociados a una zona 

http://www.cenicana.org/
http://www.cenicana.org/
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geográfica en particular, y manejo del cultivo en finca por medio de un modelo mixto, el cual explicó 

más del 80% la variación en rendimiento. 

 

Las mejores condiciones para sembrar Rubus glaucus son las siguientes: temperatura promedio 

mensual entre 16 y 18 °C, un mínimo de profundidad efectiva del suelo alrededor de 65 cm y bajas 

precipitaciones durante el mes antes de la cosecha, en áreas donde el drenaje es pobre; o 

precipitaciones moderadas a bajas en áreas mejor drenadas. 

 

En relación a Solanum quitoense, las mejores condiciones son: una temperatura promedio mensual 

entre 15 y 19 °C, profundidad efectiva del suelo entre 40 y 67 cm, pendiente del terreno entre 13 y 24 

°C. Variables “proxies” para manejo del cultivo y condiciones socio-económicas fueron incluidas en el 

estudio, ya que un efecto de localidad fue evidenciado a través de la modelación, sugiriendo la 

influencia de variables que no fueron posibles de capturar durante la recolección de datos. Por 

ejemplo, no hubo suficiente información para identificar manejo agronómico del cultivo y factores 

sociales asociados con altas producciones, a pesar de que hubo fincas con rendimientos superiores 

al promedio, indicando que fueron más eficientes en el manejo agronómico del cultivo. 

 

Nuestros resultados abren la posibilidad de identificar las prácticas de manejo implementadas por los 

agricultores más productivos, y extenderlas a otros agricultores menos productivos para que ellos 

también puedan aumentar sus productividades y de ésta manera poner en práctica recomendaciones 

específicas por sitio a partir del conocimiento de las experiencias de sus colegas. 

 

El estudio muestra que el análisis y la interpretación de las experiencias productivas de los 

agricultores, combinado con información de las condiciones de desarrollo del cultivo, pueden 

proporcionar información útil sobre dónde y cómo cultivar Rubus glaucus y Solanum quitoense. 

Metodologías de investigación operativa y participativa y las experiencias productivas de los 

agricultores surgen como una herramienta prometedora para el desarrollo de producción agrícola 

específica por sitio para cultivos poco estudiados. Esto es especialmente importante en Colombia, 

debido a la poca investigación sobre los cultivos en general, y la heterogeneidad ambiental de los 

sitios donde se desarrollan los cultivos. 
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SAMENVATTING  
 
Planten en oogsten is telkens weer een uniek teeltexperiment. In onze studie veronderstellen we dat 

als het mogelijk zou zijn om de beheerspraktijken en de omgevingsomstandigheden van een 

teeltsysteem te karakteriseren, en om informatie over het geoogste product in voldoende grote 

aantallen en onder verschillende oogstomstandigheden te verzamelen, het mogelijk zou moeten zijn 

om analytische methodes op te stellen die het teeltsysteem adequaat beschrijven. Deze benadering 

wordt gebruikt in operationeel onderzoek, waarbij mathematische modellen van geobserveerde 

processen die delen identificeren die zouden moeten gewijzigd worden om het systeem te 

optimaliseren. 

 

Informatie over verschillende teelten van suikerrtiet in het departement Valle del Cauca werd 

verzameld door het Centro Colombiano de Investigación de la Caña de Azúcar (CENICAÑA) en werd 

ingevoerd in gegevensgestuurde modellen die werden toegepast op twee weinig bestudeerde 

vruchten uit Colombia: de Andes braambes (Rubus glaucus Benth) en de lulo (Solanum quitoense 

Lam). 

 

Het onderzoek integreert informatie bekomen bij kleinschalige telers, omgevingsinformatie uit 

openbare gegevensbanken en mathematische technieken om te komen tot een plaatsspecifieke 

benadering voor de bestudeerde teelten. Het werk neemt de ervaringen van de telers omtrent een 

brede waaier aan omgevings- en socio-economische omstandigheden in rekening, om ons in staat te 

stellen een combinatie van opbrengstverklarende factoren te identificeren. De de telers zelf werden 

bij de gegevensverzameling betrokken, wat eigen is aan operationeel en participatorisch onderzoek. 

 

De aan de hand van suikerrietgegevens ontwikkelde modeleringsmiddelen verklaarden 90 % van de 

variatie in de opbrengst van Rubus glaucus en werden gebruikt om (a) opbrengstverklarende factoren 

te identificeren aan de hand van een sensitiviteitsmatrix; en (b) relaties tussen de relevante 

variabelen te visualiseren aan de hand van een niet-gesuperviseerd clusteringsalgoritme.  

 

Bij Solanum quitoense werd een iteratieve procedure gebruikt dat (a) de variabelen identificeert die 

de opbrengstvariatie best verklaren, (b) gelijkaardige omgevingen clustert aan de hand van een 

neuraal netwerk; en (c) het omgevingseffect, de aan het geografische gebied eigen culturele factoren, 

en de managementkwaliteiten van de teler analyseert in een gemengd model dat meer dan 80 % van 

de opbrengstvariabiliteit verklaarde. 

 

De meest optimale omstandigheden voor Rubus glaucus zijn: een gemiddelde temperatuur tijdens de 

eerste maand vóór de oogst van 16–18 °C, een minimale effectieve bodemdiepte van 65 cm en 
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geringe regenval gedurende de maand vóór de oogst indien de bodem slecht gedraineerd is, of 

matige tot lage regenval in gebieden met beter gedraineerde bodems. De beste omstandigheden 

voor Solanum quitoense zijn: een gemiddelde temperatuur van de maand vóór de oogst van 15,8-19 

°C, een bodemdiepte van 40-67 cm en een helling van het terrein van 13-24°. Aangezien de 

modellering een effect van de locatie op de opbrengst aantoonde, en dus suggereerde dat factoren 

buiten degene die tijdens de gegevensverzameling werden bekomen, ook een invloed hebben, 

werden proxies voor het teeltmanagement en socio-economische omstandigheden in onze studie 

geïntegreerd. Zo was er bijvoorbeeld onvoldoende informatie om sociale en managementfactoren te 

identificeren die geassocieerd zijn met hoge opbrengsten, hoewel er landbouwbedrijven waren met 

hoger dan gemiddelde opbrengsten, wat er op duidt dat men daar de teelt efficiënter beheerde. 

 

Onze resultaten stellen ons in staat om managementpraktijken die door goed boerende telers worden 

gebruikt, over te dragen aan telers met lagere opbrengsten, zodat ook zij, door de plaatsspecifieke 

aanbevelingen van hun collega-telers ter harte te nemen, hun opbrengsten kunnen verbeteren. 

 

Het onderzoek toont aan dat analyse en interpretatie van de ervaringen van telers, in combinatie met 

gegevens omtrent teeltomstandigheden, voldoende informatie oplevert omtrent de meest optimale 

plaatsen en praktijken voor de teelt van Rubus glaucus en Solanum quitoense. Operationele en 

participatorische onderzoeksmethodes zijn veelbelovende technieken bij de ontwikkeling van 

plaatsspecifieke teeltpraktijken bij minder bekende tropische vruchten. Dit is in het bijzonder van 

belang in Colombia, waar onvoldoende aandacht wordt besteed naar landbouwonderzoek in het 

algemeen en waar de omgevingsomstandigheden extreem heterogeen zijn. 
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1 GENERAL INTRODUCTION 

In the linear model of research, extension officers visit farms and transfer technology to farmers 

using blanket recommendations, which are based on knowledge generated on research stations. 

They typically do not take farmers’ previous knowledge into account (Pretty, 1991; Thompson and 

Scoones, 1994; Altieri, 2002; Hall, 2005; Van Asten et al., 2009; Lacy, 2011). In the latter model of 

research, researchers measure a crop plant’s responses to specific variations in a small number of 

factors with all other factors being controlled to the extent possible. This model was useful where 

the research station was considered to be representative of a large, relatively homogeneous area 

of land (Cock, 1985; Braun et al., 1996; Gauch and Zobel, 1997). It would seem to be less useful in 

heterogeneous environments where farm is less likely to be similar to the research stations so that 

the standard recommendations based on the findings in controlled conditions at the research 

station may not be the most appropriate. In the tropics, farming systems are rarely homogeneous. 

Climate and soils can be very diverse with considerable variation over short distances, and the 

linear model is thus not always the most appropriate. 

 

Participatory research recognizes farmers’ knowledge gained over time by observing the combined 

effects of all variables that influence crop growth and which are often impossible to control (Conroy 

et al., 1999). Farmers use this knowledge to optimize their agricultural systems, which is 

essentially the same approach used by operational research in industry. Operational research 

analyses observations of an industrial organization’s operations in order to find better ways of 

performing them (Operational Research Society, 2006). Under-researched fruit species are 

typically perennials, and take several years to come into production. Participatory research allows 

data to be collected about growers’ production experiences. Moreover, according to Edgerton 

(2004), farmers think that information from their own plots is more relevant to them than data from 

research stations. The present research used operational research methodologies, based on 

modern information technology, which allows even small-scale growers to interpret their multiple 

production experiences. 

 

Sugarcane growers in Colombia collected data on their production experiences together with 

environmental and socio-economic factors to develop and apply a site-specific approach to their 

fields. They doubled their production over a period of 30 years (Isaacs et al., 2007). Similar 

approaches could be adapted to small-scale producers through the characterization of their crop’s 

growing environment using public databases on climate, landscape, and topography coupled with 

data obtained at farm level (edaphic conditions, crop management) in order to improve their 
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production. This information can then be exploited through modelling approaches to understand 

yield variability and formulate recommendations to other small-scale growers.  

 

Rubus glaucus and Solanum quitoense are two under-researched tropical fruit species grown in 

heterogeneous environments by smallholders, who typically have poor production and very few 

resources at their disposal to make informed management decisions.  

 

The basic premises of this research are: 

 as the conditions under which farmers operate are highly heterogeneous and farmers are 

continuously trying out something new, every time a farmer plants and harvests a crop, this 

represents a unique experience or “ cropping event”; and  

 if it were possible to (a) compile information on how individual cropping events were 

managed; and (b) characterise the conditions under which a large number of these 

experiments occur, it would be possible to deduce optimum practices for specific 

conditions.  

 

The objectives of this thesis are therefore to: 

 

 demonstrate that the principles of operational research methodologies developed for 

sugarcane in Colombia can be applied to under-researched crops such as R. glaucus 

and S. quitoense, by providing growers with the basic information, which, together with 

their own experiences, can be analysed and interpreted to provide insights into how 

yield varies with variations in the environment; 

 

 evaluate modelling methodologies developed during this research for sugarcane, to 

determine their suitability as tools for modelling the response of R. glaucus and S. 

quitoense to variation in environmental conditions and management practices, by using 

information of crop response collected by small-scale producers; 

 

 use these methods to identify the conditions that are most suitable for the production of 

R. glaucus and S. quitoense, based on the information obtained from those farmers 

who managed their crops particularly well. 

Having briefly presented the utility of this approach, the remainder of this chapter gives some 

general information about the linear model of research and technology transfer, participatory 

research, and operational research based on farmers’ production experiences. It then goes on to 

site-specific agriculture, based on operational research and farmers’ production experiences. 
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Chapter 2 outlines the methodology for collecting data on farmers’ production experiences and 

contrasts its potential in a well-researched crop (sugarcane) with two under-researched crops 

(Andean blackberry and lulo) in Colombia. Chapter 3 deals with data management and analysis, 

and the development of predictive and explanatory models taking into account the experience 

acquired during the sugarcane modelling exercise using the database provided by CENICAÑA. 

Chapters 4 and 5 illustrate the application of the strategies developed for sugarcane to Site-

Specific Crop Production (SSCP) of Andean blackberry and lulo. The application is based on the 

approaches of operational and participatory research, integrated with information collected by 

small-scale producers coupled with publicly-available environmental data. In chapter 4, the SSCP 

strategy seeks to identify the most important factors that explain productivity of R. glaucus. In 

chapter 5, in addition to determining the most relevant factors explaining S. quitoense production, 

the effects of geographical location and variation within and between environmental clusters are 

investigated. Finally, chapter 6 presents a general discussion and provides concluding remarks, as 

well as recommendations for further research based on the experience acquired during the 

development of this thesis. 

1.1  LINEAR MODEL OF RESEARCH AND TECHNOLOGY TRANSFER 

 
The linear model of research, also called “top-down research model”, has been developed using 

many experiments conducted in controlled conditions (Chambers and Ghildyal, 1985; Chambers et 

al., 1989; Pretty, 1991; Thompson and Scoones, 1994; Marsh and Pannell, 2000; Russell and 

Ison, 2000; Altieri, 2002; Hall, 2005; Van Asten et al., 2009; Lacy, 2011). Crops such as wheat 

(Triticum spp.) or maize (Zea mays L.) have increased their yield through plant breeding programs 

that used the linear research model (Evans and Fischer, 1999). Standard recommendations 

generated by this model were used for large relatively uniform areas (Cock, 1985; Braun et al., 

1996; Gauch and Zobel, 1997). It is difficult however, to propose standard recommendations for a 

specific production site, as agricultural systems are heterogeneous in terms of environment, 

complexity and also socio-economic conditions (Basso et al., 2001). 

 

In the linear model of research, the basic rationale guiding defining extension messages for the 

technology transfer process has been to develop varieties that are supposed to be adapted to wide 

regions. This model has also applied to sugarcane (Saccharum officinarum L) (Evenson, 1981). In 

general, researchers have continued to develop varieties adapted to mega-environments that are 

supposed to be environmentally homogenous. As a consequence, the linear model of research is 

often used to develop recommendations for improved crop management (Cock, 1985; Braun et al., 

1996; Gauch and Zobel, 1997). Extension officers have been trained to use this model with 

standard recommendations for large, relatively homogeneous regions (Benor and Harrison, 1977). 
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Standard recommendations such as the use of herbicides in certain crops were thus successfully 

implemented in a wide range of conditions. Nevertheless, although the use of widely adapted 

varieties, technologies, and standard recommendations were successful for many decades, it is 

now accepted that it is more effective to generate more targeted recommendations based on and 

derived from a large number of on-farm measurements. Moreover, the heterogeneity of growing 

conditions over different agricultural systems and the wide range of crops cultivated worldwide, 

suggest that standard recommendations are not always the best option, so optimizing agricultural 

systems requires the development of site-specific recommendations (Isaacs et al., 2007; 

Niederhauser et al., 2008; Cock et al., 2011). 

 

As an example, working as an extension officer in Colombia years ago, the author of this thesis 

made blanket recommendations following the linear model of research and technology transfer. 

Extension officers were instructed to make recommendations about growing and managing a 

specific variety of coffee (Coffea arabica) that was tolerant of coffee rust disease (Hemileia 

vastatrix) in the department of Caldas. The variety had been developed in very specific 

environmental conditions by researchers, but was supposed to be grown by farmers over a wide 

range of conditions. Farmers quickly realized that the variety did not perform well in conditions 

different from those in which it had been developed. As a result, researchers tried to adapt it to a 

wider range of conditions. However, given their previous experiences, farmers were unwilling to 

accept it (La Patria, 2011; Sandoval, 2011). Traditionally, extension officers are provided with 

technologies and recommendations not only on new varieties but also on pesticides, fertilizers, and 

other managements options to pass on to farmers. Some of them work well, but some of them do 

not (Lacy, 2011). 

 

Edgerton (2004) notes that recommendations from the linear model of research are not used by all 

farmers. He therefore questions their possible success as farmers get most of their knowledge 

from their own experience and from other farmers. He concludes that most farmers usually spend 

a lot of time on how to adapt the recommended technologies to their own conditions. Indeed, 

farmers are continually doing research and are in a permanent process of technological innovation 

(Lyon, 1996). In a literature review of pest impact on crop yield, Rosenheim et al. (2011) showed 

that 88% of surveyed studies had been performed on research farms whereas only 12 % had been 

done on farmers’ fields. Montaner (2004) remarks that researchers often only take into 

consideration a limited number of farmers’ fields. As result they do not always know the range of 

management options that farmers use. Another difficulty of the linear model of research is that 

there is often a lack of knowledge on the part of the researchers of what really works at farm level.  
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Rosenheim et al. (2011) stated that in this formal research model it is common to assume that “in a 

well-replicated experiment, a researcher generates one or more treatments by manipulating some 

variable, A, while holding other conditions as nearly constant as possible; assigns those treatments 

randomly to experimental units; and then measures a response variable, B. If the response 

variable B differs significantly across treatments, then the experimenter can infer with a high 

degree of confidence that a change in A causes a change in B. In contrast, when a researcher 

observes a correlation between a natural, pre-existing variation in variables C and D, it is difficult to 

know whether the correlation reflects a causal influence of C on D, of D on C, or whether C and D 

are not causally related to each other at all, but instead are both influenced by some other 

variable(s) E, F, and so on, which may or may not have been measured by the experimenter.”  

 

The conclusion is that experiments carried out on-farm by farmers themselves, under specific 

environmental and socio-economic conditions, generate specific knowledge for and on their 

production sites. Using the latter knowledge, much better targeted extension messages can be 

developed.  

1.2 PARTICIPATORY RESEARCH 

 

Growers know the variations that exist on their farms. They constantly learn from their experiences, 

and adapt and implement technologies they develop according to what they learned.  

According to Conroy et al. (1999), participatory research as a formal research methodology was 

designed to capture all the information that can be generated by farmers.  

 

The approach recognizes farmers’ ability to do research. The authors stated that there are four 

different ways to manage participatory on-farm research. First, there is the traditional linear mode 

in which farmers’ knowledge is less considered. Second, there is a consultative mode in which 

technical alternatives proposed by a researcher are tested in growers’ fields. Third, there is a 

collaborative mode in which ideas about the trials to be tested are generated with the participation 

of researchers and farmers together. Finally, there is the collegiate mode in which farmers decide 

on the content of the experiments to conduct. This offers a huge opportunity to use information 

collected by the producers themselves under specific conditions. This information can be coupled 

with modern information technology to characterise specific growing conditions and relate them to 

crop responses and thus arrive at site-specific recommendations. 

 

The system of informally exchanging information amongst farmers formed the basis of an 

important revolution in agricultural production between the seventeenth to nineteenth centuries in 

England. Over that period, there was a threefold increase in livestock and crop production without 
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the involvement of research stations, government ministries of agriculture, extension institutions or 

pesticides. Moreover, rural transport infrastructure was also notoriously poor (Pretty, 1991; 

Overton, 2006). The knowledge acquired by farmers was spread through farmer-to-farmer contact, 

open days, workshops, rural tours, informal training, and even publications, which farmers then 

adapted to their own conditions (Pretty, 1991). As a consequence, one of the most important 

revolutions in agriculture was based on technology developed by farmers themselves (Overton, 

2006). 

 

As noted by Thompson and Scoones (1994), farmers’ knowledge is often assumed as primitive, 

wrong, and unscientific. Additionally, researchers regard the world as easy to disaggregate into 

effects of independent variables. They tend to demonstrate that the factors that they have selected 

are well-suited for the response they want to model. Hence, they focus on statistically significant 

differences generated by different levels of variables that they themselves have chosen as the 

most relevant (Rist, 1997). But the reality is that farmers face dynamic, complex, rapidly changing, 

and often chaotic combinations of factors that they have to take into account in managing their 

farms in order to improve their agricultural systems 

 

Rosenheim et al. (2011) pointed out that, “experiments are the ultimate intellectual playground in 

which researchers can attempt to implement any manipulation that they can imagine. In contrast, 

observational studies are restricted to conditions that actually occur in the field”. The latter authors 

suggest that knowledge generated by researchers can be complemented by farmers’ production 

experiences, performed under a wide range of conditions.  

1.3 OPERATIONAL RESEARCH BASED ON FARMERS’ PRODUCTION 
EXPERIENCES 

 
Participatory research and the linear model of research both focus on doing experiments to obtain 

knowledge on crop performance. As Schank (2011) writes, “now, while it is difficult if not 

impossible to conduct controlled experiments in most aspects of our own lives, it is possible to 

come to understand that we are indeed conducting an experiment when we take a new job, or try a 

new tactic in a game we are playing, or when we pick a school to attend, or when we try and figure 

out how someone is feeling, or when we wonder why we ourselves feel the way we do”. The author 

of this thesis subscribes to this view and insists that farmers are continually experimenting. 

However, growers do not have the tools or the methodologies to make the best use of their 

experimental results. On the other hand, operational research methodologies can help farmers 

make sense of their experiences.  

 



7 
 

As an example, operational research observes an industrial organization’s operations and uses 

mathematical or computer models, or other analytical approaches to find better ways of doing them 

(Operational Research Society, 2006). This method is similar to those used by total quality 

management which emphasizes monitoring, measurement and systematic capture and codification 

of tacit knowledge to detect trends (Bessant and Francis, 1999; Kannan and Tan, 2005). Similarly, 

in the medical profession, systematic collection and analysis of information from the everyday lives 

of people is used to elucidate factors associated with cardiovascular disease and hence to 

recommend methods to control the latter (Framingham heart study, 2006). 

 

Farmers are embedded in specific agro-ecological and socio-cultural contexts that change 

constantly. Hence, growers have constantly to make adjustments associated with their specific 

production conditions (Thompson and Scoones, 1994). These continuous modifications made by 

farmers in relation with ding to their particular circumstances may induce an increase in their 

yields. They can therefore take advantage of the analysis of their multiple experiences using the 

principles of operational research. 

 

As an example of this, the Cropcheck system determines the most appropriate practices for any 

given condition (Lacy, 2011). It benchmarks farmer crops to identify the best practices associated 

with high yields. Through this approach, both productivity and profitability of wheat increased by 

50% over a six-year period in Chile (Lacy, 2011). Similar approaches have been implemented in 

Australia in sugarcane, where the TopCrop system makes grower information available to 

researchers in order to support farmers to establish optimum practices for particular crops and 

conditions (Evans and Fischer, 1999; Schulz et al., 2001; Lawes and Lawn, 2005). Researchers 

have used information generated by farmers to recommend the most suitable varieties and 

management for cocoa (Theobroma cacao) in Ghana. Similarly in Canada, information from strips 

planted in farmers’ fields has reduced the cost of producing new varieties of winter wheat (Triticum 

aestivum), and in Asia the interactions of temperature and radiation on rice (Oryza sativa) were 

elucidated from multiple trials on farmers’ fields (Yan et al., 2002; Edwin and Masters, 2005; Welch 

et al., 2010).  

1.4 SITE-SPECIFIC AGRICULTURE  

 
At the Centro de Investigación de la Caña de Azúcar (CENICAÑA) in Colombia, researchers and 

growers combined environmental information on soils and climate with crop performance, to 

determine site-specific guidelines for sugarcane management, in order to do that, they combined 

approaches of operational and participatory research (Isaacs et al., 2007; Cock and Luna, 1996). 
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Both Site-Specific Agriculture (SSA) and Precision Agriculture (PA) are largely based on the 

principles of the observation of crop response to temporal and spatial variation. CENICAÑA 

defines SSA as: “the art of managing crops according to the spatial and temporal variation in 

conditions of the site where they are grown with a view to optimize production” (Isaacs et al., 

2004). CENICAÑA has been the pioneer of SSA in Colombia. Through SSA, sugarcane yield 

increased from 5 t/sugar/ha/yr in 1980, to 11 t/sugar/ha/yr 2003-2005 (Figure 1.1.). 

 

 

Figure 1.1. Evolution in sugarcane productivity (tons of sugar per hectare per month - TAHM) in Colombia from 

1960 – 2008 (Isaacs et al., 2007) 

 
In PA, which is also called site-specific management, crops are managed taking into account the 

environmental conditions under which they are grown, according to temporal and spatial variation 

(Cassman, 1999). Hence, PA seems to be useful when information on crop response to specific 

conditions is available in an attempt to optimize the agricultural system at micro-level (Figure 1.3). 

For instance, when a particular spot in a field is identified as a place where plants are performing 

poorly due to the lack of a given nutrient, then these plants can be supplied with the lacking 

nutrient (Bongiovanni and Lowenberg-Deboer, 2004). PA has been widely implemented in 

countries where environmental conditions vary less than in the tropics, and knowledge about the 

factors that results in high productivity is available (see Proceedings of the 14th annual symposium 

on precision agriculture, 2010). PA normally involves monitoring of within-site variability with 

wireless sensors, telemetry systems, and sophisticated analytical tools. For most crops in 

developing countries in the tropics, farmers do not have access to these sophisticated tools. 

Moreover, their first requirement often is to manage their farms well, before using PA to address 

within-site variation and increase yields. 
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Figure 1.2. SSA looks for variation at field scale (macro-level) in which each field has features that make it 

relatively homogeneous in terms of environmental conditions and agricultural management practices. In SSA and 

PA, fields are often called Management Units (figure elaborated by the author) 

PA can be implemented either in a whole field (National Research Council, 1997; Cassman, 1999; 

Läderach, 2011) or in specific places within a field (Basso et al., 2001; Erazo, 2011). For PA to be 

applied at within-field level, spatial variation is commonly associated with a single factor such as 

deficiency of water or specific soil nutrients, other soil features, or outbreaks of pests or diseases, 

which are limited to a small area. Other conditions such as management practices and climate are 

then assumed to remain stable over the whole plot (Cock et al., 2011). 

 

In the tropics, there is a need to generate information for developing both knowledge and 

technology adapted to field level, before venturing into a higher resolution PA (Cassman, 1999; 

Spaans and Estrada, 2004). This was true for sugarcane in Colombia where both knowledge and 

technology data are available for the last 20 years. This allowed to develop SSA, which is now 

being refined to develop PA to deal with within-field variation (Erazo, 2011). The first step in 

implementing PA requires understanding of the variability over relatively homogeneous areas, 

before dealing with the variation in individual fields (Figure 1.2) (Spaans and Estrada, 2004). 

Furthermore, it has been demonstrated in both sugarcane and banana, that before to define the 

spatial and temporal variation of the factors that affect crop performance, information on the crop 

response to these factors is needed first (Cock and Luna, 1996; Cassman, 1999; Spaans and 

Estrada, 2004). 

 

Plant age 

Soil 
characteristics 

Agricultural 
management practices 

Variety 
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Figure 1.3. Example of PA, looking for variation at within field scale (micro-level) (spatial variability of soils effect 

on sugarcane yield) (Erazo, 2011)  

 

Recently, and similarly to sugarcane, SSCP based on the approaches of operational and 

participatory research was applied to coffee in Colombia. As an example, brew quality is important 

in the coffee market, but the conditions that yield high quality are very narrow, and are largely 

associated with bean size. Management practices implemented by farmers in commercial fields 

that give high quality were used to define denomination of origin criteria for Colombian coffee 

(Niederhauser et al., 2008; Cock et al., 2011).  

1.4.1 SSCP FOR UNDER-RESEARCHED CROPS IN COLOMBIA 

For under-researched crops, the combination of (applying approaches) of operational research 

(coupled) with SSCP techniques, offers an alternative to experiments on research stations. As far 

as we know, this combination of methods has not been applied before to under-researched crops 

grown by small farmers in Colombia nor elsewhere. However, caution is needed when applying 

this method of operational research to agriculture, as the latter has been developed for industrial 

processes where variability is typically reduced to the extent possible. In agriculture, even though 

conditions cannot be controlled to the same extent as in industry, the principles of the methodology 

can be preserved. As a member of a multidisciplinary team, the author was involved in the 

development and validation of tools to collect, analyse, and interpret information on farmers` 
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production experiences in an attempt to apply SSCP methods to Rubus glaucus and Solanum 

quitoense. 

 

The environmental conditions under which R. glaucus and S. quitoense grow are quite diverse, 

varying a lot in time and space. These conditions are therefore difficult to control, so that 

productivity varies widely between regions and even between farms. Moreover, both crops are 

harvested continuously during the year and productivity fluctuates throughout the year. 

 

For temperate crops, management can be optimized, and is applied to short and well-defined 

cropping and harvest periods. In contrast, tropical crops present a multitude of different 

management options and environments. For example, production during the dry season may 

require totally different water and pest management techniques to those required in the wet 

season. A direct consequence of this need for multiple management options is the necessity for 

continuous experimentation by producers. Furthermore, most tropical fruit plants are perennials, 

and have been neglected by traditional agricultural research. In Colombia, most research on 

tropical fruit species has addressed fruit quality and/or biochemical composition (Estrada, 1992; 

Osorio et al., 2003; Flórez et al., 2008; Pulido et al., 2008; Acosta et al., 2009). There are only a 

few studies on these crops' responses to variations in management and/or environmental 

conditions, hence R. glaucus and S. quitoense are under-researched. 

 

In summary, the lack of knowledge/data on the most suitable conditions to grow tropical fruit 

species, heterogeneous growing conditions, and year-round production of many tropical species 

would require an impossibly large number of experiments to meet the requirements of the 

conventional linear model of research and technology. 

 

Collecting response data directly from farmers by compiling their production experiences on their 

own fields appears to be an effective way to obtain data needed to develop SSCP for under-

researched tropical fruit species in Colombia. It is clear that the collection and analysis of large 

datasets is necessary to be able to draw conclusions from the natural occurring variation on 

farmers’ sites. Modern information technology that can be used to capture this variability includes 

Global Positioning Systems (GPS), publicly-available environmental information, satellite imagery, 

fast computers, and analytical software packages suited to handle large, categorical datasets. 

These allow the large amount of information generated by describing and monitoring farmers’ 

production experiences to be collected, processed, analysed, and interpreted. The processed 

information can provide insights on plant responses to individual factors and the interaction 

between them, but more importantly, indicates a crop’s likely response to environmental and 

management factors on the farmers’ production sites.  
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Crop responses to specific factors can be analysed in different ways, but for each production site in 

the site-specific approach used here, the so-called event is used as the unit of analysis (Cock, 

2007). “An event occurs in a particular site within a given period of time and it is normally taken as 

the period between planting and harvest, or as the period between one harvest and the next, in 

crops which are not replanted after each harvest” (Cock et al., 2011). 

1.5 THE CONTEXT OF THE PRESENT RESEARCH 

 
Most of the research reported here was done over a three years period, covering July 2005–July 

2008, as part of a cooperation project between Colombia and Switzerland, “Site-Specific 

Agriculture for Tropical Fruits” (SSAFT). In Colombia, the institutions involved were Corporación 

BIOTEC (CB), the Centro Internacional de Agricultura Tropical (CIAT) and CENICAÑA. The latter 

contributed the sugarcane database used for developing the modelling tools and knowledge about 

sugarcane. In Switzerland, the Haute Ecole d'Ingénierie et de Gestion du canton de Vaud (HEIG-

VD) contributed through its experience in dealing with real-world data to build models by means of 

supervised and unsupervised artificial neural networks. 

 

The main objective of our research was to increase the competitiveness of smallholder fruit 

growers in Colombia, through the development and integration of strategies based on integrating 

farmers’ production experiences with publicly-available environmental data using computational 

models to understand yield variability. The State Secretariat for Education and Research (SSER) in 

Switzerland granted three scholarships to two electronic engineers and one agronomist for the 

development of the models at HEIG-VD. The engineers developed the artificial neural networks 

models. The author of this thesis coordinated data collection, compiled the data in centralized 

databases, analysed the data, and interpreted the model outputs from an agronomic point of view. 

The strategy at HEIG-VD regarding the development of artificial neural network modelling 

techniques for analysing and interpreting the data is summarized in Figure 1.4. 

 

 

 

 

 

 

 

 

 



13 
 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Modelling strategy at HEIG-VD: three axes of research were identified to develop the computational 

models. The first two axes were conducted by two electronic engineers, while the author’s research focused on the 

third axis 

 

The agronomic part focused on 3 elements: 

 

(a) literature review of the applications of supervised and unsupervised techniques in 

agriculture;  

 

(b) coordinate data collection in Colombia and support the electronic engineers responsible for 

the construction of prediction and intelligence visualization models, with agronomic 

knowledge, identify the most suitable variables to build the mathematical models, and 

facilitate data interpretation; and  

 

(c) extend the experience achieved in the development of the sugarcane models to Rubus 

glaucus and Solanum quitoense. 
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2 METHODOLOGY FOR COLLECTING FARMERS’ PRODUCTION EXPERIENCES, 
HARVEST EVENTS AND ENVIRONMENTAL INFORMATION 

2.1 INTRODUCTION 

 
The hypotheses that this research seeks to verify are that: (a) modern information technology can 

be used to combine information on farmers’ production experiences with publicly-available 

environmental databases; and (b) the principles of operational and participatory research facilitate 

the task of collecting, characterizing and interpreting data on many cropping events that occur 

under a wide range of conditions. 

 

The research presented in this thesis is based on methodologies that were developed in Colombia 

for the well-studied crop sugarcane (Quintero and Castilla, 1992; Carbonell et al., 2001; Isaacs et 

al., 2004 and 2007; Torres et al., 2004; Cock et al., 2011). These methodologies were adapted to 

crops such as Rubus glaucus and Solanum quitoense. The author of this research participated in 

the development and validation of these methodologies.  

 

The analysis and modelling of the information as applied to both under-researched crops was 

published as two peer-reviewed papers in international journals as part of this thesis and is 

presented in detail in chapters 4 and 5. However, in the original article versions there is only a brief 

description of the methodology due to length constraints required by the journals. In this chapter 

we provide more detailed explanation of the procedures followed to collect the information 

compared to the published papers. In addition, in the present section, important background 

information on the sugarcane production system is briefly provided. The methodology for collecting 

farmers’ production experiences, standardization and compilation of information in centralized 

databases is then illustrated, highlighting the adaptations which were required to fit within the 

social and technical context of under-researched fruit crops grown by small farmers.  

 

The methodology comprises of: 

 

data collection: compilation of farmers’ production experiences based on cropping events that 

describe the environmental and management conditions under which sugarcane, R. glaucus and 

S. quitoense are cultivated, and 

 

data management of the information captured: the strategy to store and transfer the information 

collected for sugarcane, R. glaucus and S. quitoense  
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2.2 CROPS UNDER STUDY 

 
The operational research approach for tropical fruit species grown by many independent small 

farmers requires the collection of data from multiple sites continuously over time. Unlike 

sugarcane, there is not just one harvest event at approximately yearly intervals. This major 

difference between continuously harvested crops coupled with major differences in the 

organization of the sugarcane sector indicated that specialized approaches to data collection were 

needed for the Andean fruit species we studied here. The latter approaches were developed as 

part of this research. 

2.2.1 SUGARCANE 

Sugarcane is an important crop in the Valle del Cauca department in Colombia (Figure 2.1). Crop 

management is based on the known agro-ecological characteristics of each production unit, and 

soil–plant–water relations (Isaacs et al., 2007). CENICAÑA is the national research institution for 

sugarcane, financed and managed directly by the sugarcane sector. Unlike for most crops in 

Colombia, where there is a lack of organization of the supply chain and where they do not have a 

dedicated research institution, CENICAÑA provides sugarcane growers with advise and 

technology based on a close relationship between growers and researchers, who work together as 

a team. 

 
 

Figure 2.1. Location of the Valle del Cauca department within Colombia (figure elaborated by the author) 

 

The processes of data collection and management are strongly associated with the organization of 

the supply chain. For instance, the weight of the sugarcane produced by each plot is measured by 

the sugar mills as payment to growers is based on weight and sugar content of the harvested 
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cane. The contracts between growers and mills indicate the area of each plot to be harvested; 

hence, cane tonnage can be related to specific sites with known area. Furthermore, mills collect 

information on planting and harvest dates, and variety planted. The mills store this information in 

their databases and make it available to the centralized CENICAÑA database. In the mid 1990s, 

the sugar industry standardized the measurement methods for the whole industry, thus all data 

collected is in standardized formats 

 

The characterization of specific sites is based on multiple data source. The sugarcane growers’ 

organization conducts soil surveys, operates automated weather stations, and produces digitized 

maps that facilitate data capture (Isaacs et al., 2000; Isaacs et al., 2004; Cock et al., 2011). In this 

research, data from the centralized CENICAÑA database was used to develop modelling tools that 

were then applied to R. glaucus and S. quitoense. 

2.2.2 ANDEAN BLACKBERRY AND LULO 

Andean blackberry (Rubus glaucus Benth.), also known as the Andes berry or mora de Castilla, 

(Bioversity International, 2005a), is grown commercially in Colombia, Ecuador, Guatemala, 

Honduras, Mexico and Panama (Franco and Giraldo, 2002). It is highly appreciated for its sweet-

acid taste, dark-red colour (Figure 2.2), and pleasant aroma (Ramos et al., 2005). Lulo (Solanum 

quitoense Lam.) is a fruit native to the humid forests of the north-western Andes (Figure 2.3). It is 

grown commercially in Colombia (6640 ha), but production does not meet national demand (Tafur, 

2006; Medina et al., 2008). It has a high-quality juice with a nice aroma, high nutritional value, and 

is used in the agro-industry (National Research Council, 1989; Franco et al., 2002; Franco and 

Giraldo, 2002; Osorio et al., 2003; Flórez et al., 2008; Pulido et al., 2008; Acosta et al., 2009; 

PAVUC, 2010). It is also grown in Costa Rica, Ecuador, Honduras, Panama, and Peru (Bioversity 

International, 2005b).  

 

Both Andean blackberry and lulo are important sources of income for smallholders in the 

Colombian hillsides (Sora et al., 2006), which have limited infrastructure and produce in conditions 

of high environmental variability (Franco et al., 2002; Franco and Giraldo, 2002). Growers of 

Andean blackberry and lulo in Colombia face high incidence of pests and diseases, which are 

costly to control and reduce profitability (National Research Council, 1989; Estrada, 1992; Flórez et 

al., 2008). Furthermore, lack of effective social organization along the supply chain has led to little 

development of new technology and insights into improved management practices.  

 

Well-organized and economically powerful sectors such as sugarcane, coffee and oil palm (Elaeis 

guineensis) have their own research institutes in Colombia. In contrast research on tropical fruits is 
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quasi non-existent because the fruit supply chains are weak, despite the initiatives of the national 

government to promote growers’ organizations. Moreover, because of the long biological cycle of 

these species, it would take many years of study to define the plants’ responses to environmental 

conditions. Most research has therefore been short-term, which means that little is known of their 

physiology. There is relatively little published information on the phenology of these species. 

Descriptions are often found in extension type literature where experienced agronomists have 

documented their field observations, normally for a specific ecological niche, and hence may not 

be extrapolated to other areas with confidence. Within these limitations the general phenological 

stages for Andean blackberry and Lulo are described in Figures 2.4 and 2.5.  

 

 

Figure 2.2. Andean blackberry: (a) branch with fruits; (b) fruit as it can be found in local markets. Taken from the 

New World Fruits Database (Bioversity International, 2005a)  

 

 

Figure 2.3. Lulo: (a) plant exhibiting fruits; (b): fruit as it can be found in local markets. Taken from the New World 

Fruits Database (Bioversity International, 2005b) 

(a) (b) 

(a) (b) 
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Figure 2.4. Phenological stages for Andean blackberry (Franco and Giraldo, 2002; Grijalba et al., 2010) 

 

 

 

Figure 2.5. Phenological stages for Lulo (Franco et al., 2002; Garcia, 2003) 

2.3 COLLECTION OF INFORMATION ON CROPPING EVENTS AND GROWING 
CONDITIONS 

2.3.1 SUGARCANE 

The Instituto Geográfico Augustin Codazzi (IGAC) and the Corporación Autónoma Regional del 

Valle del Cauca (CVC) have produced soil and geographic maps of the area at 1:50,000 covering 

375,000 ha of the upper Cauca River valley where most sugarcane in Colombia is grown. 

CENICAÑA pedologists used expert opinion to provide more detailed maps. Meteorological data 

are available from 34 government and private weather stations. Using these, potential evapo-

transpiration and water balance were calculated and mapped as humidity groups. For a more 
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detailed description of these studies see: Quintero and Castilla (1992); Carbonell et al. (2001); 

Isaacs et al. (2004) and (2007); Torres et al. (2004); and Cock et al. (2011). 

 

The data on sugarcane is tied to what are called harvest events. A harvest event for sugarcane is 

the harvest of a particular plot at a specific moment in time. When harvest conditions and timing 

are similar, crop performance is also thought to be similar leading to the notion of environmental 

and temporal homogeneity. By definition, an Agro-Ecological Zone (AEZ), is a homogeneous area 

that shares similar environmental characteristics that influence crop responses, so that differences 

between crop performances within an AEZ must be due to the timing of the harvest event 

(Carbonell et al., 2001; Liu and Samal, 2002; Isaacs et al., 2007; Cock et al., 2011). In an attempt 

to obtain information on harvest events, production data was provided by the sugar mills for each 

plot. 

2.3.2 ANDEAN BLACKBERRY AND LULO 

In the case of sugarcane, the sugar industry maintained records of the environmental conditions 

and production of sugarcane at individual plot level. This was later on compiled into a centralized 

CENICAÑA database. This situation contrasts with that of the Andean fruit crops. The climatic and 

soil conditions of Andean blackberry and lulo individual plots were not available when this research 

began. Furthermore, the vast majority of Andean fruit growers simply did not maintain records on 

the production of their crops and how they managed them.  

 

Farmers observe how their crop responds to the way they manage it and how it interacts with the 

environment. An individual farmer has only a narrow range of experience from which it is not 

possible to generalize. But, by applying the method of operational and participatory research, data 

describing a large number of harvest events within a range of management and growing 

conditions, can be used to develop data-driven models that will provide insights in the production 

system (Jiménez et al., 2009). Hence, in order to apply the operational research principles to 

Andean blackberry and lulo, it was necessary to establish systems to: (a) collect information on 

cropping events (b) characterize the growing conditions; and (c) create and compile the information 

collected (data management). The information collected was then used to model Andean 

blackberry and lulo yield.  

 

As in sugarcane, harvest events for Andean blackberry and lulo coincide with the intervals between 

one harvest and the next. In contrast with sugarcane, however, there are no pre-defined 

homogeneous AEZs that can be used to determine which variables control crop yield. It was 
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necessary, therefore, to associate the productivity of each production site with its environment and 

the farmers’ management practices using data from as many sites as feasible. 

2.3.2.1 COLLECTION OF INFORMATION ON CROPPING EVENTS 

In order to record information on the production of each plot planted to Andean blackberries and 

lulo, the author, together with researchers at Corporación Biotec and local Andean blackberry and 

lulo producers, developed a guide form based on a calendar, which was used by the farmers to 

record information. Data recorded on forms included a description of each plot, its location, crop 

species and variety or eco-type (see Appendix A2), events or harvesting experiences, and some 

management practices which were registered on the guide form (see Figures 2.6, 2.7 and 

Appendix A2).  

 

Farmers’ management information includes choice of the variety they plant. This was recorded 

along with other management practices, such as planting date and plant spacing. In Colombia, 

commercial varieties of both Andean blackberry and lulo are either thorned or thornless, with no 

further differentiation. There is no further genetic information available. Standard traditional 

practices for these crops are mainly control of pests and diseases such as Botritis (Botrytis 

cinerea) and Perla de la tierra (Eurhizococcus colombianus) for Andean blackberry, and 

(Phytophthora infestans) and Picudo de la flor (Anthonomus spp.) for lulo (Franco et al., 2002; 

Franco and Giraldo, 2002; BIOTEC, 2007).  

 

   
 
Figure 2.6. Training farmers to use the guides and calendars; left: using the guide form for Andean blackberry; 
centre: using the guide for lulo; right: recording information on a production site 
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Figure 2.7. Farmers transporting guide form to their farms 

 

2.3.2.2 SUMMARY OF FARMER PARTICIPATION 

A total of 186 small-scale farmers provided information via calendar forms. Of these, 89 recorded 

production data, but not all of them recorded all the information required (location of each plot, 

variety, management practices). Variety and number of plants was recorded by 77 growers, but 

only 41 of them recorded soil information to give complete datasets. Based on these 41, it was 

possible to characterise 742 cropping events, 488 for Andean blackberry and 254 for lulo (Table 

2.2). It was not possible to collect information on specific management factors like outbreaks of 

pests and diseases, or application of pesticides or fertilizers. Farmers in the Nariño department 

shared more information than growers in other departments, probably because there are grower 

groups in Nariño that meet frequently to share experiences  

 

2.3.2.3 COLLECTION OF INFORMATION ON GROWING CONDITIONS 

2.3.2.3.1 SOIL INFORMATION 

There are neither soil maps nor expert description of the soils where Andean blackberry and lulo 

are grown. Moreover, most farmers have neither the knowledge nor the resources to correctly 

classify their soils. Nevertheless, they do know how important soil is in determining what crops to 

grow and how to manage them. Due to the complexity of the mountainous terrain in which these 

crops are grown, there are no soil maps of the study areas at a scale large enough to be useful 

(O’Brien, 2004). For example, the scale of the FAO world soil map (FAO, 1974) is 1:5,000,000, 

which does not represent the heterogeneity of this complex terrain. Soil characteristics in the 

Andean regions of Colombia vary widely at very local scale, and there is usually no direct 

correlation between soil type and other soil features such as pH and texture (Läderach, 2009). 
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There is a need for a simple, easy-to-learn methodology, based on scientific and locally generated 

knowledge, for farmers to characterize their soils and terrain (Alvarez et al., 2004). 

 
The Centro Internacional de Agricultura Tropical (CIAT) and the Universidad Nacional Sede 

Palmira developed a Rapid Soil and Terrain Assessment (RASTA) tool, which is a simple in situ 

methodology for farmers (Alvarez et al., 2004). RASTA was used in the present research to 

determine soil and terrain characteristics for the Andean blackberry and lulo sites. RASTA is 

downloadable from http://www.frutisitio.org/wp-content/uploads/2011/02/RASTA-2011.pdf 

(Appendix A1). 

 

RASTA measures: (a) basic soil characteristics that can be assessed directly in the field, and (b) 

infers a number of other soil properties (Table 2.1). Each of the inferred traits can be obtained 

through standard methods (Danielson and Sutherland, 1986). RASTA mostly estimates physical 

soil properties such as slope, stoniness, and mottling, which change less with time compared to 

chemical properties that change with each fertilizer application or as nutrients are extracted by 

harvested crops. RASTA gives farmers a tool that they can use to assess their soils conditions 

without the need for expert evaluation. During the course of the research, Andean blackberry and 

lulo growers were trained to use RASTA (Figure 2.8), and the information they collected was 

processed in the subsequent analysis. 

  
 

Figure 2.8. The author training farmers on the use of RASTA. Left, training farmers how to determine soil texture, 

right how to use the guide 

 
 
 
 
 
 
 
 
 
 
 
 

http://www.frutisitio.org/wp-content/uploads/2011/02/RASTA-2011.pdf
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Table 2.1. Soil characteristics estimated in RASTA 

 

Basic characteristics Inferred traits 

Land form Organic matter content+
 

pH (acidity or alkalinity) Internal drainage+ 

Texture External drainage+ 

Structure Effective soil depth+ 

Hardpans Salinity 

Presence of carbonates Sodicity 

Rocky or stoniness  

    + Defined in Alvarez et al. (2004) (Appendix A1) 
 

 

It was not possible to include soil pH or the presence of carbonates in the final analysis because 

the materials required to unequivocally measure them (indicator paper, acid) are neither easy to 

obtain in the area, nor easy to manipulate. 

 

Table 2.2. Summary of the number of Andean blackberry and lulo growers who recorded information via 
calendars 

 

Crop Departments GPS 
Cropping 

events 
Production 

Variety and 
number of 

plants 
RASTA 

Complete 
plots 

  No of 
farms 

weekly 
periods 

No of 
farms 

No of 
farms 

No of 
farms 

No of 
farms 

Andean 
blackberry 

 

Caldas, 
Nariño 

75 488 
 

35 34 20 20 

Lulo Nariño, 
Others 

111 254 54 43 21 21 

Total  186 742 89 77 41 41 

 

2.3.2.3.2 ENVIRONMENTAL INFORMATION  

Climate and weather conditions in the Andean hillsides are highly variable. Often, the only data 

available comes from a weather station 30 km or more distant, which in these heterogeneous, 

mountainous landscapes, usually bears little relation to the reality of the specific farmer’s site. In 

order to characterize individual sites, we used information from multiple sources described below. 

 

New geospatial information on natural resources has recently become available on a global scale, 

including high-resolution topography (SRTM, Farr and Kobrick, 2000) and climate data (WorldClim, 

Hijmans et al., 2005). These databases are either available as raster maps, which represent 

continuous layers or grids. Maps are divided into equal-sized cells (pixels), each of which contains 
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a single value of the factor mapped. For raster data, the term resolution is used rather than scale 

(O'Brien, 2004; Läderach, 2009). Resolution is the size of one pixel and is commonly given in arc 

degrees. The distance represented by one degree of longitude varies with latitude, and is about 

111 km at the equator. A 30 arc-second resolution is about 1 km at the equator, while 3 arc-second 

resolutions is approximately 90 m at the equator (Läderach, 2009). 

 

The Shuttle Radar Topography Mission (SRTM) database contains high-resolution topographical 

and landscape information (Farr and Kobrick, 2000). This database is a high resolution terrain 

model at 90 m spatial resolution (downscaled to 30 m). The SRTM is a project between the 

national aeronautics and space administration and the national geospatial-intelligence agency. The 

database is available at http://srtm.csi.cgiar.org. SRTM uses radar interferometry to obtain digital 

topographic data for 80% of the Earth's land surface, at CIAT the missing data in the primary 

coverage were filled with secondary data (Jarvis et al., 2006; Läderach, 2009).  

 

In order to provide researchers with useful information on climate variability, Hijmans et al. (2005) 

developed interpolated climate surfaces for global land areas at a spatial resolution of 30 arc-

seconds (often referred to as 1-km spatial resolution) in the WorldClim database. To do so, they 

compiled monthly averages of climate as measured at weather stations from a large number of 

global, regional, national, and local sources. Most of the data cover a period of 50 years (1950–

2000) and were interpolated them using “a thin-plate smoothing spline algorithm”. WorldClim 

contains monthly precipitation and mean, minimum and maximum temperatures. The data can be 

downloaded from http://www.worldclim.org 

 

Another source of climate information is Tropical Rainfall Measuring Mission (TRMM) from which 

estimates of monthly average rainfall can be extracted based on the model developed by Bell 

(1987). The TRMM satellite was launched in November 1997 and continues in operation. The 

dataset corresponds to the original satellite snapshot views and is available at http:// 

http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=TRMM. We 

used the TR3b42 dataset at a resolution of 10 arc-minutes (18-km). The TRMM data is an integral 

of atmospheric humidity, not actual rainfall, so they are called either precipitation estimates or 

precipitable water (Huffman et al., 1995; Kummerow et al., 1998). We call them precipitable water, 

which are estimates of the likely rainfall over a particular period of time. Hence using this measure 

gave an estimate of the actual rainfall at a given site over a given period of time. This contrasts 

with WorldClim which gives long term averages of rainfall at a particular time of year at a particular 

site. In this study, we extracted monthly data for the two-year period January 2006 to December 

2007. 

http://srtm.csi.cgiar.org/
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree=project&project=TRMM
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Production sites were geo-referenced to allow extraction of environmental data of harvesting 

events from the publicly-available environmental databases (see Figure 4.3 and Tables 4.1 and 

5.1). The environmental data was included for the period of yield formation, which encompassed 

the climate when pests and diseases attack. Harvest month, first, second and third month before 

harvest for Andean blackberry and harvest month, first, and second month before harvest in the 

case of lulo. Variables that we extracted and generated from the SRTM, WorldClim and TRMM 

databases are summarised in Table 2.3.   

 

Table 2.3. Environmental factors used in the present study and obtained from publicly-available environmental 
databases  

 

 Variable Database Source Units 

 Precipitable water - daily rainfall TRMM mm 
 Monthly total precipitation WORLDCLIM mm 
 Monthly average temperature WORLDCLIM mm 
 Monthly minimum temperature WORLDCLIM °C 
 Monthly maximum temperature WORLDCLIM °C 
 Temperature range WORLDCLIM °C 
 Altitude SRTM MASM 
 Slope SRTM ° 

 

2.3.2.3.3 CURRENT MODELLING SOFTWARE BASED ON PUBLICLY-AVAILABLE CLIMATIC DATA  

Software packages such as Floramap (Jones and Gladkov, 2003), DIVA (Hijmans et al., 2005b), 

and Homologue (Jones et al., 2005) use publicly-available climatic databases to estimate the 

suitability of particular crops to specific climatic conditions. Floramap, DIVA, and Homologue 

require agronomic knowledge of the particular crop species for the user to be sure that their 

predictions of the suitability of a particular site are correct. As this knowledge is available for 

neither Andean blackberry nor lulo, the statistical approach used by these packages is inadequate.  

 

Floramap, DIVA, and Homologue all use a pixel size of 10 arc-minutes (about 18 km at the 

equator), which, however, is too large to be useful in environmentally highly heterogeneous zones 

like the Andes where Andean blackberry and lulo grow. Therefore, modelling tools that integrate 

information of soils and can explain yield variability with little prior knowledge of the crop are 

alternatives to the statistical approach used by these packages.  

2.4 DATA MANAGEMENT 

 
CENICAÑA developed a specialized software (SEGUITEC) to link the industry’s sugarcane data 

with the centralized CENICAÑA database (Isaacs, 1999). The software contains information on 

yield and sugar concentration collected over the last 20 years, and also includes weather and soil 



26 
 

data. This allows the compilation of a large number of cropping events over a wide range of 

conditions. 

 

To apply the same methodology to Andean blackberry and lulo, a number of datasets related to 

harvesting events over a range of conditions is required. We therefore created a database in MS 

Access containing information collected by Andean blackberry and lulo farmers via calendars of 

production events. The database included a description of each production plot, GPS coordinates 

(latitude and longitude), and soil data registered via RASTA (Figure 2.9). As previously mentioned, 

production sites were geo-referenced in order to allow extraction of environmental data via 

publicly-available environmental databases (Tables 4.1 and 5.1). 

 

 
 
 Figure 2.9. Database format used in the SSAFT project, using Microsoft Access (2003) 

2.5 COMMENTS ON THE METHODOLOGIES 

Sugarcane in Colombia has been researched in depth in contrast to Andean blackberry and lulo, 

which have received little attention. Nevertheless, the concept of harvest events, as previously 

defined, is common to all three, and provides an essential element for the construction of 

databases based on farmers’ production experiences. In sugarcane, harvest events are ascribed to 

individual plots, which are harvested at 11–18 month intervals. In contrast, individual plants of 

Andean blackberry and lulo are harvested year-round. We used weekly periods as harvest events. 

This resulted in information on numerous cropping events that vary temporally and spatially. 

 

The organization of the supply chain (see section 2.2) determines how data can be collected and 

managed. The supply chain for sugarcane is highly organized and autonomous and has its own 
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research centre. Detailed soil maps and climate information from the industry’s own weather 

stations, coupled with expert opinion, allows the characterization of the variation in space and time 

of each harvest event.  

 

Andean blackberry and lulo do not have strong grower associations, as a consequence data 

collection and management requires a different approach. First, we had to develop methodologies 

that farmers could use to record information on their crops and their soils. In order to guarantee 

that they would be user-friendly, they were developed in collaboration with farmers. The validity of 

this approach was confirmed when farmers themselves recorded 742 cropping events on 41 plots 

and used RASTA to characterize their soils (Table 2.2). In the case of environmental data, GPS 

coordinates were successfully used to extract data from Shuttle Radar Topography Mission 

(SRTM), Tropical Rainfall Measuring Mission (TRMM), and WorldClim (section 2.3.2.3.2), and thus 

associate climatic conditions with each cropping event. The major differences between the systems 

developed for sugarcane and under-researched crops are summarized in Table 2.4. 

 
Table 2.4. Comparison of the process of collecting harvest events in sugarcane, Andean blackberry and lulo 

 
Process of collecting 

cropping events 
Well-researched crop 

(sugarcane) 
Under-researched crops 

(Andean blackberry and lulo) 

Supply chain organization 
Collaboration between growers, 
mills and CENICAÑA research 
institute 

Absent 

Capture of soil data 1:50,000 soil maps RASTA (captured by farmers) 

Capture of climate data Industry’s own weather stations  
Publicly-available environmental 
databases 

Capture of cropping events 
Data management systems and 
GIS database 

Guide forms (filled by farmers) 

Definition of homogeneous 
AEZs 

Defined through detailed soil and 
climate data and expert opinion 

Not defined 

Data management CENICAÑA software (SEGUITEC)  MS ACCESS database 
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3 DATA MANAGEMENT AND ANALYSIS - LEARNING FROM THE WELL-STUDIED 
DATABASE OF SUGARCANE IN COLOMBIA  

3.1 INTRODUCTION 

The well-studied sugarcane crop in Colombia contrasts greatly with Andean blackberry and lulo 

(see previous chapter). Nevertheless, cropping events are common to all three crops. In the case 

of sugarcane, harvest information is collected by the sugar mills for each production site. In 

Andean blackberry and lulo, this information was generated through the use of calendar forms with 

information recorded by farmers themselves. As previously mentioned, one of the objectives of the 

present research is to demonstrate whether, despite the limited knowledge on both species in 

Colombia, it is possible to use a SSCP approach for these crops in order to provide insights into 

how yields vary with variations in the environment.  

 
The first component of our research is to use farmers’ observations of crop response under 

commercial production conditions. In Colombia, this approach has been successfully applied in 

well-studied crops such as sugarcane and coffee (Isaacs et al., 2007; Niederhauser et al., 2008; 

Cock et al., 2011). The second component is to use information obtained from farmers’ 

observations on cropping events, combined with tools presented in the previous chapter to 

construct models that can be used to explain yield variability in Andean blackberry and lulo. The 

experience in sugarcane and coffee suggested that the most effective way to model farmers’ 

production experiences is to create clusters of events which occur in similar environmental 

conditions. In the coffee and sugarcane studies, these clusters are defined with the aid of expert 

opinion. Once relatively homogeneous clusters are established, the effects of variation within and 

between clusters can be analysed (Isaacs et al., 2007; Cock et al., 2011). 

 

In the case of sugarcane, there is a wealth of knowledge about the crop. This information exists 

amongst others as a result of the high degree of organization of the supply chain, expertise of 

agronomists and producers, and also many years of research (see chapter 2). This knowledge 

provided (a) the wherewithal to define relatively homogeneous clusters of agro-ecological zones, 

and (b) insights about the functional relationship between sugarcane production and many of the 

factors considered likely to influence sugarcane production.  

 

In the case of Andean blackberry and lulo, there is neither sufficient knowledge to define agro-

ecological zones in which similar environmental characteristics influence crop responses, nor is 

there detailed knowledge of the functional relationships between processes that can be linked to 

crop performance. Therefore, and in order to define clusters with similar environmental conditions, 
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a different approach was needed. In this research, the strategy used by the electronic engineers, 

who formed part of the multidisciplinary research team, outlined in chapter 1, developed 

methodologies to identify “climatic agro-ecozones” (Barreto, 2012). 

 

A non-supervised artificial neural network approach showed that zones, even though 

geographically distant, could be clustered using this technique (Barreto, 2012). Meteorologists and 

sugarcane experts at CENICAÑA corroborated these results and pointed out that the climate 

clusters defined in that study, as far as sugarcane growth and development are concerned, are 

climatically similar. Hence, it was concluded that the technique can be effectively applied to cluster 

environmental conditions (Barreto and Pérez-Uribe, 2007; Barreto, 2012; Satizábal et al., 2012). 

 

The neural network approach is particularly powerful when little is known about the relationships 

between factors (Schultz et al., 2000; Sargent, 2001; Paul and Munkvold, 2005). In the case of 

sugarcane it was known, for instance, that yield is not a linear function of the age of the crop since 

planting or the last ratoon. Therefore, yield prediction models for sugarcane included both linear 

and quadratic terms for yield of sugarcane as a function of the age of the crop (Cock et al., 2011). 

In the particular case of sugarcane yield versus crop age, there was sufficient agronomic 

knowledge to indicate the likely non-linear function that could approximate reality. However, in 

some cases (for well-researched crops and sugarcane), and in most cases (with under-researched 

crops for which no formal production models exist), there is little information on the exact nature of 

the non-linear response to variables. Many responses of crops to both management and 

environment are strongly non-linear: for example, the response of almost all crops to temperature 

is positive up to a certain point and negative beyond that optimum (Pollock, 1990).  

 

This lack of knowledge about the true form of the response indicates the necessity of exploring 

approaches that make no assumptions about the functional respones in crops that have neither 

been studied in depth nor systematically backed up by knowledge of experts. Hence the need to 

explore novel methods to address SSCP development in information-poor systems, such as the 

under-researched crops studied in this thesis.  

 

In the particular case of Andean blackberry, we used data collected by farmers on calendar forms, 

through RASTA and from publicly-available environmental databases to explore the relationships 

between crop yield and the recorded parameters. The geographical location of the site where 

Andean blackberry was produced had an important effect on yield (see chapter 4). We 

hypothesised that a geographical location effect could either be due to (a) specific environmental 

conditions in different locations; (b) cultural differences of the producers; or (c) a combination of 

both.  
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Based on this hypothesis and the experience in sugarcane and coffee, we decided for lulo, to use 

an iterative procedure based mostly on non-parametric approaches. The procedures first identify 

the most relevant factors linked to lulo yield; second, uses this information to define clusters having 

similar environmental conditions, and third, analyses the effect on yield of the environment, 

locations, and farms. The most relevant factors associated with lulo yield were identified through a 

combination of robust regression and non-linear artificial neural network. The relatively 

homogeneous clusters of environmental conditions were defined with a non-supervised neural 

network and finally a mixed model with best linear unbiased prediction was used to provide a 

quantitative estimate of the effects on yield of the environmental clusters, locations and farms 

which were treated as categorical variables (see chapter 5). The location and farms were used as 

proxies for management effects at both the regional level (locality) and within the regions (farm). 

 

The decision to use non-parametric analytical methods was supported by a first analysis of the 

data structures, which indicated lack of normality (figures 4.2 and 5.2). For Andean blackberry and 

lulo, Shapiro-Wilk and Anderson-Darling were applied as procedures to test normality (Razali et al., 

2011). The resulting p values for both tests were lower than 0.05 (Table 3.1) which indicates that 

there is not sufficient evidence to confirm a normal distribution of residuals. Both datasets were 

highly skewed and heavy tailed (Figures 3.1a and 3.1b). Parametric approaches are not generally 

considered appropriate for datasets that lack normality, and are highly skewed and heavy tailed.  

 
Table 3.1. Normality tests applied to Andean blackberry and lulo datasets 

 

Test Andean blackberry Lulo 

Shapiro-Wilk p-value = 1.48 e-13 p-value = 1.60e-07 
Anderson-Darling p-value = 2.2 e-16 p-value = 2.04e-05 

 

 
                          (a)                (b) 
Figure 3.1. Normal quantile-quantile plot of the residuals for (a) Andean blackberry, and (b) lulo. Both datasets 
display heavy tailed data 
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In the study conducted for lulo (see chapter 5), in an attempt to identify the factors associated with 

yield that would then be used to determine the clusters, we used both non-parametric and 

parametric methods. In spite of the reservations on the applicability of parametric models to this 

dataset, the most relevant factors identified by the two methods were in general agreement, and 

the results were used in the non-parametric unsupervised neural network to determine the 

environmental clusters. The information of the clusters provided by the unsupervised neural 

network, together with the categorical variables location and farm were incorporated into a mixed 

model. Thus, in order to use the latter model, as it was suggested by a statistician, taking into 

account that it was evident that each farm was independent of the others, this new dataset should 

also show homogeneity of variance. Figure 3.2 shows that dispersion of residuals is around zero, 

and therefore there was no evidence of heteroscedasticity. Hence following the statement made by 

Foody (1999) about data distribution in agricultural systems, mixed models with best linear 

unbiased prediction were used to analyse the data within a hierarchical framework of clusters of 

environmental conditions, locations and farms. This mixed model with best linear unbiased 

estimated effects within and between environmental clusters (see chapter 5). 

 

 

Figure 3.2. Plot of residuals against the fitted values. Residuals exhibit homogeneity of variance 

 

Within the available non-parametric models, we chose non-linear approaches based on neural 

networks. We did this, not only because they are non-parametric, but also because they have 

proven capabilities for being able to manage noisy, incomplete, and heterogeneous, data. 

Furthermore, they can handle datasets where there is neither prior knowledge about data 

distributions nor information on possible mechanisms or functional responses to variation (Pérez-

Uribe, 1998; Peña-Reyes, 2002; Barreto, 2012; Satizábal et al., 2012). 
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In order to evaluate these approaches, and as part of the HEIG-VD research team outlined in the 

introduction; the candidate provided agronomic expertise to build “non-linear supervised” and “non-

linear unsupervised” models using CENICAÑA’s sugarcane database. This experience with the 

sugarcane databases provided the basis for applying these advanced modelling techniques to 

analyse productivity in Andean blackberry and lulo in highly heterogeneous conditions of both 

environment and management.  

 

This chapter provides the rationale behind the use of ANNs. As part of the learning process with 

sugarcane, we surveyed literature on supervised and unsupervised modelling approaches based 

on artificial neural networks (ANNs), the results of which were published as a book chapter 

(Jiménez et al., 2008). Then, the sugarcane database was analysed to identify the most suitable 

variables to use in models and facilitate data interpretation (Barreto et al., 2007; Jiménez et al., 

2007). The latter models were adapted and applied to the data collected through the methods 

described in chapter 2 for the two under-researched crops, e.g. Andean blackberry and lulo, 

(chapters 4 and 5) and were published in international journals (Jiménez et al., 2009; Jiménez et 

al., 2011).  

3.2 A SURVEY OF ARTIFICIAL NEURAL NETWORK-BASED MODELLING IN 
AGRICULTURE 

 
Adapted from: Jiménez, D., Pérez-Uribe, A., Satizábal, H.F., Barreto, M., Van Damme, P. and 

Tomassini, M. (2008). A survey of artificial neural network-based modelling in agroecology. In: B. 

Prasad. (Ed.), Soft computing applications in industry. Springer-Verlag Berlin Heidelberg, pp. 247-

269. 

 
Agricultural systems are difficult to model because of their high complexity and non-linear dynamic 

behaviour (Basso et al., 2001). The evolution of such systems depends on a large number of ill-

understood processes that vary in time, and whose relationships are often highly non-linear and 

very often unknown. According to Schultz et al. (2000) there are two major problems when dealing 

with modelling agro-ecological systems. On the one hand, there is an absence of equipment able 

to capture information in an accurate way, whereas on the other hand there is a lack of knowledge 

about such systems. Researchers are thus required to build models in both well-studied and 

under-studied situations, by integrating different data sources, even if this data is noisy, 

incomplete, and imprecise, as is the case of the crops studied in this work. 

 

When modelling an agricultural system, we can proceed by considering the modelling problem as 

either a regression or a classification problem. For instance, we deal with a regression problem 
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when modelling natural processes such as crop yield, climate and physiological variables, 

vegetation dynamics, greenhouse conditions, severity of a given pest and/or disease, etc., given 

that the dependent variables are continuous (Philip and Joseph, 2003; Kaul et al., 2005; Chung Lu 

et al., 2006). On the other hand, when dealing with a classification problem, we want to model 

phenomena such as environmental variability, yield quality and quantity, genetic variation, soil 

properties, land cover, etc., given that the dependent variables of the system are categories, and 

that the main research idea consists of assigning the same class to individuals with similar features 

(e.g., by forming groups) (Levine et al., 1996). 

 

ANNs have been shown to represent a successful tool for modelling agricultural systems by 

considering the latter either as regression or classification problems (Hashimoto, 1997; Schultz and 

Wieland, 1997; Schultz et al., 2000). Thus, ANNs can be regarded as an alternative to traditional 

statistics, in particular when dealing with the highly variable, noisy, incomplete, imprecise and 

qualitative nature of agricultural information. Such techniques have been shown to be capable of 

“learning” non-linear situations using qualitative and quantitative information. In general, they have 

shown better pattern recognition capabilities than traditional linear approaches (Murase, 2000; 

Schultz et al., 2000; Noble and Tribou, 2007). During the last twenty years, researchers have 

acquired a lot of experience using artificial neural network-based models.  

 

This section presents a survey of artificial neural network modelling applications in agriculture, in 

an attempt to provide researchers in agriculture with insights about neural networks modelling in a 

language easily understandable to them.  

3.2.1 ARTIFICIAL NEURAL NETWORKS (ANNS) 

An ANN (Bishop, 1995) is a computational structure where many simple computational elements, 

called artificial neurons, perform a non-linear function of their inputs. Such computational units are 

massively interconnected and are able to model a system by means of a so-called training 

algorithm. This algorithm attempts to minimize an error measure that is computed in different ways 

depending on the specific technique used to adjust the connections (e.g. the learning algorithm). 

 

In order to build such a model, the user collects a series of records or “examples”, and presents 

them to the network with the aim of computing output values that might be real values when 

dealing with a regression problem or discrete outputs when dealing with a classification task. In an 

attempt to obtain the desired outputs, a training algorithm is used to adapt itself to a set of 

parameters, called synaptic weights (because they are supposed to model the synaptic 

connections between biological neurons). These parameters weigh the relative relevance of the 
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input variables at the level of each artificial neuron. Once a model is trained by this technique, the 

model is able to generalize its response to previously unknown input information (Hsieh, 2009). 

 

There are two major approaches to train an ANN (e.g., to adapt its parameters): supervised and 

unsupervised learning.  

 

In the supervised learning approach, specific examples of a target concept are given. The goal is 

to learn how to recognize members of a class or to build a regression model using the description 

attributes. In this case, the synaptic weights among neurons are adjusted in order to minimize the 

error between the known desired outputs and the actual output given by the neural network during 

the learning process. Objective functions in supervised learning algorithms have the form of error 

functions, which calculate the discrepancy between the actual output of the model, and the desired 

output taken from the dataset. The signals produced by these error functions are used to guide the 

adaptation of parameters of the model. The most widely used errors function is the Sum of 

Squared Error (SSE), (equation 3.1; Peña-Reyes, 2002; Satizábal, 2010); 

 

𝑆𝑆𝐸 =
1

2
      𝑜𝑘 ,𝑛 − 𝑡𝑘 ,𝑛 

2
𝑐

𝑘=1

𝑁

𝑛=1

 

     

 

In this function, o represents the actual output of the network, t represents the desired output, n 

runs for every observation in the dataset (N is the number of observations), and k runs for every 

output unit in the network (c is the number of outputs). The SSE function, being a squared 

subtraction, is minimized when every output of the network matches every desired output 

contained in the training set. 

 

As far as the classification problem is concerned, the output of the model is a discrete value. In the 

case of regression problems, the objective becomes the approximation of a continuous target by 

using the input attributes (Peña-Reyes, 2002).  

 

In the unsupervised learning approach, the set of examples is provided without any prior 

classification. The goal is to discover underlying regularities and patterns, most often by identifying 

clusters or subsets of similar examples. Training in this case consists of looking for a compressed 

representation of the examples collected (original data); the error is the difference between this 

representation of the original data and the original data (Bishop, 1995). In other words, there is no 

prior information about the categorization or labels of these examples. During the learning process, 

the system reproduces the distribution of the observations in the original dataset in a space with a 

(3.1). 
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reduced dimensionality. Said in another way, the model generates groups over the input patterns 

based on correlations or similarities between examples (Hilera and Martínez, 1995; Peña-Reyes, 

2002; Satizábal, 2010). Modelling an input distribution with artificial neural networks is performed 

by placing, e.g. artificial neurons, in specific places of the input space in such a way that the 

positions of the artificial neurons represent some properties of the observation distribution used in 

the process of training the model. Then, to measure how well the neurons reproduce the original 

dataset, a topology error is measured (Satizábal, 2010).  

3.2.2 INFORMATION PROCESSED AND DATA PREPARATION 

There are several types of information that can be obtained from agricultural or farming systems. 

On the one hand, information on temperature, precipitation, soil water content and yield are 

examples of variables with continuous representation. On the other hand, information on soil 

structure, texture, colour, quality, and many variables recorded on commercial crop production are 

likely to be categorical (e.g. weed control, land preparation practices, soils structure, and texture). 

All these types of information should be fully exploited in order to build a reliable model. 

 
Because every neuron in a network represents real values, neural networks allow the direct use of 

these values. Conversely, neurons cannot generate categorical data directly. Thus, the latter type 

of data must be converted into real values in order to feed the models. This data format conversion 

is often called “binarization” and uses different coding schemes. A widely used coding scheme is 

the so-called “local encoding”, where a new binary variable is created for each category. Thus, 

each observation in the dataset is represented by the binary input of the original category 

converted to one. 

 

Table 3.2 shows an example of how depending on the soil order to which the original data 

observation belongs, the observation is set to 1, whereas the rest of soil orders for this observation 

remain as 0. 
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Table 3.2. Conversion of categorical information on 5 soil orders into binary values by using “local encoding” (table 
elaborated by the author) 

 

Original soil orders 

(category) in the dataset 

Representation of the observations in the dataset used to feed the models 

according to their original soil order 

Observations Soil order 

 Mollisol Vertisol Entisol  Ultisol Inceptisol 

Mollisol 1 0 0 0 0 

Vertisol 0 1 0 0 0 

Inceptisol 0 0 0 0 1 

Mollisol 1 0 0 0 0 

Inceptisol 0 0 0 0 1 

Vertisol 0 1 0 0 0 

Ultisol 0 0 0 1 0 

Entisol 0 0 1 0 0 

 

Yield prediction in terms of weight/area illustrates how a model could be fed with different types of 

information after converting categorical variables into numerical representations. In this case, the 

model can use climate information about, for example, temperature and precipitation, which are 

real values, whereas it can also use binarized data obtained from categorical values like soil 

taxonomy classes, structure, texture, or colour. 

 

The more accurate data are, the more reliable the resulting model will be. Out-of-range values are 

considered as a source of error, therefore they should be removed from the dataset. The detection 

of these outliers can be guided by researchers, or by using statistical techniques. As an example, if 

it is known that the temperature of a certain area should be confined to values within a specific 

range, the researcher can detect out-of-range values by comparing the collected data with these 

limits and subsequently remove these outliers by hand. 

 

Another phenomenon diminishing data accuracy and model reliability is data incompleteness 

(Satizábal et al., 2007). Several situations during data collection can result in missing values. For 

instance, meteorological stations could fail or have compatibility problems with more recently 

developed measurement equipment. Additionally, detection and deletion of out-of-range values 

reduces the amount of available data, increasing data incompleteness. In order to cope with this 

drawback, different approaches based on averaging or interpolations are widely used to estimate 

the values of the missing data. The use of clustering techniques based on artificial neural networks 

(Self-Organizing Maps) extends the possibilities of pre-processing data. Furthermore, researchers 

do not have prior information about the processes to be modelled. As a consequence, they do not 
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necessarily know the individual relative relevance of each variable. In practice, the data is 

standardized during the modelling process in order to facilitate a number of calculations and 

improve interpretability. Hence, different variables, having different ranges due to the diversity of 

sources of agricultural information, are transformed into a range that varies for example between -1 

and 1.  

3.2.3 NEURAL NETWORK APPROACHES 

ANNs development arose from an attempt to simulate living/animal nervous systems (Figure 3.3) 

by combining many, simple computing elements (neurons) into a highly interconnected system and 

hoping that complex phenomena such as “intelligence” would emerge as the result of self-

organization or learning (Sarle, 1994).  

 

 
Figure 3.3. Biological neuron anatomy. Neurons receive signals via highly branched extensions, called dendrites 
and send information along unbranched extensions, called axons (Pérez-Uribe, 1998) 

 
Neurons in artificial networks are linked together by a weighing value representing the synaptic 

connections displayed by the real neurons. Moreover, the processing units are organized in such a 

way that they form different layers of neurons. The way neurons are connected among layers 

determines the network topology (Figure 3.4). Hence, feed-forward networks are networks where 

information goes unidirectionally from inputs to outputs. In other words, the units of any layer are 

connected only to the units of a subsequent layer (Figure 3.4). In general, we use the term 

recurrent networks when there are also connections driving information to previous layers. 

 

Among layered topologies, artificial neurons are organised in regular arrays called layers. The 

different neurons of the network perform different functionalities depending on the location of the 

layer they are placed in. Neurons belonging to the input layer transmit the input information into the 

network and thus feed the next layer of neurons. These following layers are called hidden layers. 

They are responsible for processing the information coming from the inputs by using non-linear 
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functions. Finally, neurons belonging to the output layer result in the model response by using the 

processed information coming from the preceding layers (Figure 3.4). 

3.2.4 MULTILAYER PERCEPTRON 

A Multilayer Perceptron (MLP) is an ANN with feed-forward topology and several hidden layers 

(Figure 3.4). In practice, however, only one, two or three hidden layers are used. The training 

process is carried out in a supervised manner whereby adjustment of model parameters can be 

done by means of numerous algorithms. In this respect, gradient descent strategies are the most 

widely used (Bishop, 1995). 

 

 

Figure 3.4. Schematic illustration of a three-layered feed-forward neural network, with one input, one hidden and 
one output layer. Circles (nodes) represent neurons, whilst lines stand for connections. Information flows from left 
to right (Satizábal, 2010) 

 
During the training process, there is a pattern which indicates to the ANN the desired output as a 

function of input variables (training pattern). Training is carried out in order to minimize the error 

between the desired response and the predicted response by means of an optimization algorithm 

(Hsieh, 2009).  

 

To compute the output of the feed-forward neural network, a node receives data from the previous 

layer and calculates a weighed sum of all its inputs. The equation is shown below 

 

𝑡𝑖 =  𝑊𝑖𝑗𝑋𝑗

𝑛

𝑗=1

 

                

 

where n is the number of inputs, W is the weight of the connection between nodes i and j, and X is 

the input from node j. A transfer function is then applied to the weighed value, t, to calculate the 

node output, oi (equation 3.3.):  

𝑜𝑖 = 𝑓 𝑡𝑖                (3.3). 

(3.2). 
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The most commonly used transfer function is a sigmoidal function for the hidden and output layers, 

whereas a linear function is commonly used for the input and output layers (Kaul et al., 2005). 

3.2.5 GRADIENT DESCENT ALGORITHMS – BACK-PROPAGATION 

Gradient descent algorithms are optimization techniques employed to minimize a continuous 

function using information on the gradient. The gradient is a vector pointing in the direction where 

the evaluated function shows highest increase rate. Hence, it is possible to find a local minimum of 

the function by following the opposite of the direction of the gradient. The most commonly used 

output quantity is an error function which typically corresponds to the SSE of the output neurons 

(Pérez-Uribe, 1998). In the case of ANNs, the function to minimize is the difference between the 

target and the output of the model (supervised learning). One example of a gradient descent 

strategy is the Back-propagation algorithm (Rumelhart et al., 1986; Bishop, 1995) used to train 

MLPs in a supervised way. 

3.2.6 INTERPRETATION 

When the training process is successfully accomplished, the model describing the underlying 

process that generates the training data lies in the connections between the artificial neurons. At 

this stage, it is possible to write the equation describing the ANN. However, the resulting formula is 

hardly interpretable, and this is the reason why ANNs are considered to be black-box models 

(Ljung, 1999). Nevertheless, the information from the synaptic weights could be processed using 

strategies aimed at evaluating the relevance of each input in the model. 

 

In agricultural systems, it is very important to identify the underlying relationships between input 

and output data in order to guide farmers in their decision making processes. ANNs, as black-box 

models, have to be scrutinized using methodologies that allow model interpretation. In the present 

research, we use input relevance and input profile plots in an attempt to get better insights in the 

process being modelled. To accomplish this, the relevance of the inputs is calculated by measuring 

the output sensitivity with respect to each input. As part of the SSATF project outlined in the 

introduction, at the HEIG-VD, six strategies for assessing the electiveness of relevance metrics 

were evaluated. 

 

The efficiency of each one of the relevance metrics was tested and classified into two groups: 

metrics only using network parameters, and metrics using network parameters together with input 

patterns. It was found that the sensitivity matrix technique presents the best behaviour in most 

cases (equation 3.4; Satizábal and Pérez-Uribe 2007);  
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where  is the number of hidden neurons,  is the weight between input i and hidden neuron j,  

 

 is the weight between hidden neuron j and output ,         is the first derivative of the activation  

 

function of hidden neuron j and              is the first derivative of the activation function of the output  

 

neuron (Bishop, 1995). 

 

3.2.7 VALIDATION 

The training process reduces the error between the output of the model and the target. However, 

when this process is finished, there is a need to assess the behaviour of the model using unknown 

input data. After having been trained, a neural network should be able to reproduce proper 

responses even when new input data is presented. This feature is called generalization. A low 

generalization is achieved when there is not enough training or when the neural network is 

overtrained. In an attempt to assess the generalization capabilities of the model, performance is 

tested over different validation datasets.  

 

There are a number of strategies that can be followed to conduct this validation step. For large 

datasets, validation strategies that split the training set into several datasets are used. However, 

these approaches require datasets large enough to be split into new datasets. They are not 

recommended for small datasets such as the ones we obtained for Andean blackberry and lulo 

used here. Therefore, we conducted a split-sample validation.  

 

In a split-sample or hold-out validation, training and validation datasets are created before training 

the neural network. In the case of Andean blackberry and lulo (as it will be shown in chapters 4 and 

5), each training step was performed using 80% of the whole dataset, and every testing procedure 

to assess model performance was performed on the remaining 20%. This method may assess 

predictive model performance, but in the case of Andean blackberry and lulo, as they are small 

datasets, it is not recommended in its simplest form (Goutte, 1997). Nonetheless, the split-sample 

procedure can be improved for small datasets by repeating the split-sample procedure many times, 
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and by calculating the resulting performance as the average of all the tests made over the different 

validation subsets. The latter include methods for estimating generalization error such as: cross-

validation, leave-one-out validation, and bootstrap validation (Jiménez et al., 2009; Satizábal, 

2010). Models presenting a lower validation error are preferred (Bishop, 1995; Ripley, 1996; Hsieh, 

2009). 

3.2.8 SELF-ORGANIZING MAPS 

A Self-Organizing Maps (SOM) or Kohonen maps (Kohonen, 1995), can be seen as data 

visualization techniques that reduce high-dimensional datasets through the use of a self-organizing 

clustering algorithm. One of the problems with data visualization is that humans cannot visualize 

high dimension representation of data. SOM techniques can be used to better understand high 

dimensional data by visualizing information in a low dimensional space (generally a grid of two 

dimensions) (Figure 3.5).  

 
 

 

 
 
Figure 3.5. A two-dimensional SOM. Each sphere symbolizes each unit (neuron) at the high-dimensional input 
layer, and is mapped in a two-dimensional grid (output layer – Kohonen map) (Giraudel and Lek, 2001) 

 
A SOM is formed by artificial neurons situated on a regular low-dimensional grid (Figure 3.6). This 

grid can be in one, two or more dimensions, but generally two are used. The neurons in the grid 

have rectangular or hexagonal forms. Each neuron i represents a n-dimensional prototype vector 

mi = [mi1,…, min], where n is equal to the dimension of the input space (Figure 3.7a). In the 

beginning of the training process, prototype vectors are initialized with random values. With each 

step of the training process, a data vector (observation) x from the input data is selected and 

presented to the SOM. The map’s mc unit closest to x is called: the Best-Matching Unit (BMU). The 
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BMU and its neighbouring prototype vectors on the grid are moved in the direction of the sample 

vector (equation 3.5): 

 

                            𝑡  ℎ    𝑡   −                    (3.5). 

 

where   𝑡  is the learning rate and hci (t) is a neighbourhood kernel centred on winner unit c.The 

learning rate and neighbourhood kernel radius decrease with time. Through iterative training, SOM 

organizes the neurons so that neurons that represent similar vectors in the input space are located 

on the map in contiguous zones. In this way, SOMs try to conserve the linear or non-linear 

relations of the input space (Barreto and Pérez-Uribe, 2007). 

 

Figure 3.6. Self-Organizing Map with a hexagonal neuron lattice. The neighbourhood function hci (t) is centered on 
the best-matched neuron mi, which is shown as a black cell in the centre. Neighbouring neurons that have their 
weights recalculated by this best match are shown in gray surrounding the mi neuron. Other neurons are not 
affected 
 

3.2.9 SOM AS A DATA EXPLORATION TOOL  

Visualization tools are widely used for exploring and analysing data used in agro-ecological 

modelling. As far as the exploration of data is concerned, these tools allow an easy way to 

visualize the variables to be modelled, their dependencies, and their structure.  

 

Traditional visualization techniques include the use of scatter plots to detect dependencies 

between variables, and the use of a scatter plot matrix, when these are more than two variables. In 

this latter technique, one generates a matrix, composed of several sub-plots where each variable is 

plotted against each of the other variables. However, in this technique, the number of pair-wise 
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scatter plots increases quadratically with the number of variables (Figure 3.7d) (Himberg, 1998). 

Therefore, this type of visualization is not practical in applications where we need to analyse many 

variables. 

 

To improve the analysis of the dependencies between variables and/or their influence on the 

outputs of the system, it is possible to slice SOMs in order to visualize their so-called component 

planes (Kohonen, 1995) (Figures 3.7b and 3.7c). Nonetheless, like many clustering approaches, 

SOMs share the problem of deciding on boundaries for clusters. In order to address this problem, 

standard clustering methods are used to cluster pattern vectors (prototypes) of the SOM grid 

(Vellido et al., 1999). For this aim, the K-means algorithm is used to group prototypes into a given 

number of K clusters. However, one of the limitations of using K-means is that the number of 

clusters has to be defined before starting the analysis. To deal with this drawback, different K 

values are tested whereupon different groups with different number of clusters can be calculated. 

The optimal K number is then derived using the relative index of cluster validity known as Davies-

Bouldin index (equation 3.6; Davies and Bouldin, 1979; Vesanto and Alhoniemi, 2000; Park et al., 

2003);  

                    
 

 
 ∑     

        (
      

          
)                (3.6). 

 

where n is the number of clusters, σi is the average distance of all patterns in cluster i to their 

cluster centre ci, σj is the average distance of all patterns in cluster j to their cluster centre cj , and d 

(ci, cj) is the distance between cluster centres ci and cj. Small values of DB correspond to clusters 

that are compact, and whose centres are far away from each other. Consequently, the number of 

clusters that minimizes DB is taken as the optimal number of clusters. 

 

Each component plane shows the relative distribution of one data vector component, e.g., each 

variable of the respective input variables. Unlike the traditional method where the number of pair-

wise scatter plots increases quadratically with the number of variables, when using such SOM 

component plane-based visualization, the number of sub-plots grows linearly with the number of 

variables (Figures 3.7b and 3.7c). In addition, it is possible to cluster variables with a similar 

pattern. After plotting all component planes, relations between variables can be easily elucidated, 

as dependencies can be found by organizing the component planes in such a way that analogous 

planes are positioned near to each other. This method facilitates data visualization of input-input 

and input-output dependencies. An example of this technique with data of one of the under-

researched crops under study is illustrated in chapter 4. 

 



44 
 

   

(a)  (b) 

  

  

  (c)                                                       (d) 

 

Figure 3.7. (a) Self-Organizing Map (SOM). Each neuron i represents a n-dimensional prototype, where n is equal 
to the dimension of the input space, in this case n = 4. (b) Component planes. It is possible to slice the Self-
Organizing Maps in order to visualize their so-called component planes, where each component plane represents 
one input variable. (c) Component planes. Using component planes for analysis of relations between 4 variables, 4 
plots are needed. (d) Scatter plot matrix. Using the scatter plot matrix for analysis of relations between 4 variables, 
16 plots are needed 

3.2.10 LITERATURE REVIEW OF APPLICATIONS OF ANNS IN AGRICULTURE  

In this section, we present an extensive literature review of research and application articles 

reporting the uses of ANNs in agriculture. This section was first published as a book chapter 

(Jiménez et al., 2008). The studies surveyed provided us with a general overview of the exact 

nature of the applications and the context in which the respective studies were performed. Most of 

the articles surveyed, are part of the literature review made for the two articles published in 

agronomic peer-review journals and that are presented in this thesis. Likewise, links to these 

references can be found throughout the present document. 

 

The literature review has been organized in such a way as to group the articles according to the 

application in agriculture. 
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The studies deal with grading fruits, weather forecast, weed control, pest and disease 

management, yield prediction, natural resource management, irrigation and fertilization, crop 

physiology, control of greenhouse environments, soils, and field operations and agro-industrial 

processes. In our review, we start by describing the application domain and then we give some 

details of the contribution via tables (see Table 3.3). 

 

Table 3.3. Explanation of table content 

 

Prob. Particular problem that was developed/studied/addressed 
Input Data researchers used as inputs for the models 
Alg. Techniques and algorithms used 
Res. Main results of the research 
Ref. Literature references 

3.2.10.1 GRADING FRUIT 

Grading fruit is an important operation after harvesting. Fruit quality identification is commonly a 

manual task carried out by labourers based on their experience and empirical knowledge. 

However, these methodologies have some drawbacks such as inconsistency, cost, subjectivity and 

tediousness. Artificial neural network approaches have been used in order to overcome these 

drawbacks. In Table 3.4, we show some examples of how fruit can be graded using external or 

internal features. 

Table 3.4. Applications of ANNs in grading fruits 

 

Prob. To grade apple colour 
Input Image data 
Alg. Improved Back-propagation 
Res. Successful classification of quality 
Ref. Nakano, 1997 

Prob. To grade oranges (Miyauchi iyokan) according to their acid or sugar content 
Input Data on colour, shape, roughness of skin surface, and weight 
Alg. The Kalman filter algorithm 
Res. Sweet (not the acid) oranges were those that were reddish, had low weight, were glossy 

and medium-sized 
Ref. Kondo et al., 2000 

Prob. To classify strawberry varieties (Fragaria virginiana)  
Input Different chemical signatures associated with growing year, place of production and fresh 

and frozen state of samples 
Alg. SOM 
Res. Growing year was one of the most relevant factors in differentiating varieties 
Ref. Boishebert et al., 2006 

Prob. To detect defects of sweet cherries (Prunus avium)  
Input Spectral information on different cherry tissues  
Alg. EGAN (feed-forward ANN) 
Res. Accuracy of 73% in classifying sweet cherry defects 
Ref. Guyer and Yang, 2000 
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3.2.10.2 WEATHER IN AGRICULTURE  

Weather is one of the most important factors influencing agricultural systems. This factor 

influences many agro-ecological processes and variables, as it affects soil properties, pest and 

disease dynamics, agricultural practices, production, yield, etc. Variability in yield in rain-fed 

agricultural production systems can be attributed to the variability in weather conditions for more up 

to 90% (Hoogenboom et al., 2000). Therefore, it is desirable to develop accurate weather models 

capable of estimating climatic variability and its impact on agricultural systems or the environment, 

in an attempt to support decision making processes in agriculture. Table 3.5 provides some 

examples of weather modelling in agricultural systems.  

 

Table 3.5. Applications of ANNs for weather conditions 

 

Prediction of weather variables 

Prob. To forecast solar radiation  
Input Daily values of radiation, daily temperature range, precipitation, cloudiness and relative 

sunshine duration 
Alg. Back-propagation 
Res. Modelling process using neural networks successfully estimated daily solar radiation 
Ref. Bocco et al., 2006 

Prob. To estimate daily maximum and minimum air temperature and total solar radiation 
Input Maximum air temperature, daily minimum air temperature, daily total solar radiation, 

difference in elevation, difference in directions and the straight line between the target and 
input station location 

Alg. Back-propagation, traditional spatial analysis 
Res. Neural network models were more accurate than other models in estimating maximum and 

minimum temperatures and solar radiation for a single location 
Ref. Li, 2002 

Prob. To analyse trends in rainfall over long periods 
Input Rainfall data corresponding to a period from 1893 to 1933 
Alg. Back-propagation-Adaptive Basis Function Network (ABFNN) 
Res. ABFNN performed better than Back-propagation in predicting long–term rainfall behaviour 
Ref. Philip and Joseph, 2003 

Prob. To estimate ozone concentrations 
Input Meteorological data 
Alg. SOM, two-stage neural networks, multiple linear regression, two-level clustering, MLP 

neural networks 
Res. Two-stage neural network had the best performance, explaining at least 60% of ozone 

concentration variance 
Ref. Chung Lu et al., 2006 

Prob. To estimate relative air humidity (testing MATLAB and STATISTICA software) 
Input Measurements of relative air humidity taken during 100 days in the year 1988 
Alg. Back-propagation  
Res. Neural models built with MATLAB estimated and predicted relative air humidity with higher 

accuracy than those created with STATISTICA. 
Ref. Białobrzewski, 2008 
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Forecasting temperature and critical duration periods affecting plant growth 

Prob. Frost forecast in peaches (Prunus persica) during critical growth periods 
Input Temperature, relative humidity, rainfall, wind speed and solar activity 
Alg. Feed-forward neural network with different activation functions, trained with Back-

propagation 
Res. Best frost prediction was achieved using relative humidity, solar activity and wind speed 

from 2 to 6 hours before the frost event 
Ref. Jain, 2003 

Studying impact of climate change on the potential distribution of vegetation 

Prob. To model vegetation distribution in past, present and future climates, in tropical forests 
Input Seven climate variables, nine soil parent material classes and seven terrain classes 
Alg. Back-propagation 
Res. Certain locations were occupied by a forest class in some climates while others continued 

occupying  the same class despite changes in local climate 
Ref. Hilbert and Ostendorf, 2001 

Prob. To predict functional characteristics of ecosystems 
Input Data regarding six functional traits derived from the normalized difference vegetation index 

(NDVI) 
Alg. Back-propagation, regression models 
Res. Correlation between predicted and observed values for each functional trait was higher for 

the model developed with ANN than when using a regression model 
Ref. Paruelo and Tomasel, 1997 

 

3.2.10.3 WEED CONTROL  

Weed control is an essential activity in agriculture. Weeds compete with commercial crops in terms 

of space, nutrients, water and light. Weed control generally involves spraying herbicides which is 

an undesirable practice due their negative environmental impact, and because of the cost involved. 

Farmers and researchers have been interested in minimizing environmental impacts and reducing 

costs associated with weed control. Neural network classifiers have been shown to be a useful tool 

for discriminating between different kinds of weeds using databases of pictures. 

  

A number of research activities have used this approach to develop a site-specific weed 

management system which helps farmers to spray herbicides in a selective way, thereby 

decreasing the amounts of these substances remaining in the crops and the environment 

subsequently decreasing costs. Table 3.6 presents several articles dealing with weed control; most 

of them focused on recognizing weeds in field situations. However, a particular case, where weed 

seeds were recognized in a crop seed selection process, is also shown.  
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Table 3.6 Applications of ANNs in weed control 

 

Identification of weeds in field 

Prob. To classify weed species in crop fields 
Input Image datasets of 33 texture features in a six class dataset of foxtail, crabgrass, common 

lamb’s quarter, velvet leaf, and morning-glory, and clear soil surface. 
Alg. Back-propagation, Counter propagation, Radial Basis Function (RBF) networks 
Res. Feed-forward neural network trained with the Back-propagation algorithm had the best 

classification performance 
Ref. Burks et al., 2005 

Prob. To differentiate sunflowers (Helianthus annuus) from weed and soil 
Input Field images taken between two and three weeks after planting sunflower 
Alg. Back-propagation 
Res. Maximum number of correct differentiations of weeds from sunflower plants was 71 (out of 

86), 82 in separating sunflower from bare soil and 74 in distinguishing weed images from 
bare soil 

Ref. Kavdır, 2004 

Prob. Site-specific herbicide applications using automatic weed localization 
Input Digital images of more than 30 common weeds present in the research area 
Alg. Neural networks and fuzzy logic 
Res. With this approach, site-specific weed densities could be determined and thus herbicide 

applications could be better targeted (managed, monitored) 
Ref. Yang et al., 2003 

Prob. To differentiate between weeds and seedlings of carrot (Daucus carota) 
Input Measures of leaf shape, digital images 
Alg. SOM 
Res. Neural networks discriminated species without predefined plant descriptions, however, this 

method required image processing 
Ref. Aitkenhead et al., 2003 

Prob. To differentiate weed species from corn (Zea mays) and sugar beet (Beta vulgaris) crops 
Input Spectral proprieties 
Alg. Back-propagation, probabilistic neural network, learning vector quantization, SOMs, local 

linear mappings 
Res. With local linear mapping, an identification accuracy of 90% was obtained 
Ref. Moshou et al., 2001 and 2002 

Recognition of weed seeds in a crop seed discrimination process 

Prob. To discriminate weed species present in commercial seed lots (in Argentina) 
Input Image dataset of morphological, colour and texture features 
Alg. Back-propagation 
Res. Morphology was the most important feature for identifying weed seeds 
Ref. Granitto et al., 2000 

3.2.10.4 PEST AND DISEASE MANAGEMENT  

Pest and disease management is an essential component of any agricultural management system. 

Pest and disease damages to crops are known to be important factors causing yield losses. These 

yield losses are commonly tackled with strategies which involve the use of a range of pesticides, 

thereby increasing both production costs and the danger of high toxic residue levels on agricultural 
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products. Correct pest and disease management requires an accurate identification of pests and 

diseases; it also requires knowledge about the organisms’ life cycles, as well as the effect of 

environmental variables on pest and disease development and population dynamics. Some models 

based on ANNs have been developed to support these management practices, in an attempt to 

help decision makers in agriculture to avoid unnecessary pesticide applications, and to identify 

various phenomena leading to yield losses. In the following Table 3.7, we show some examples of 

predicting pests and diseases in agricultural systems, by using different sources of data 

(environmental, images, cultural, etc.).  

 

Table 3.7. Applications of ANNs in pest and disease management 

 

Diseases 

Prob. To predict the severity of maize gray leaf spot (Cercospora zeae-maydis) in corn (Zea mays) 
Input Environmental, cultural, and location-specific data, temperature, relative humidity, surface 

wetness, cumulative hours of surface wetness and of daily temperature, cumulative hours of 
nightly relative humidity 

Alg. Back-propagation 
Res. Best variables predicting severity were hours of daily temperature and hours of nightly relative 

humidity 
Ref. Paul and Munkvold, 2005 

Prob. To compare and forecast diseases in wheat (Triticum spp.) 
Input Environmental data 
Alg. Back-propagation, logistic regression and multivariate linear discrimination 
Res. Neural network and statistical models showed similar performance 
Ref. Franck, 2004 

Prob. To detect the development of “yellow rust” (Puccinia striiformis f. sp. tritici,) in wheat (Triticum 
spp cv. Madrigal). To compare a hybrid neural network + spectral reflection method with a 
fluorescence remote sensing system 

Input Spectral images (wavebands) 
Alg. SOM 
Res. The waveband centered at 861 nm was the variable which best discriminated healthy from 

diseased leaves. The hybrid approach showed the best performance 
Ref. Moshou et al., 2004 and 2005 

Prob. To detect and classify Phalaenopsis (Phalaenopsis spp.) seedling diseases: bacterial soft rot 
(Erwinia carotovora ), bacterial brown spot (Burkholderia cattleyae) and phytophthora black 
rot (Phytophthora parasitica) 

Input Images of 18 texture features of the lesion area and Red, Green, Blue (RGB) colour features  
Alg. Back-propagation 
Res. Phalaenopsis seedling diseases were successfully detected and classified 
Ref. Huang, 2007 

Prob. To identify Cucumber Green Mottle Mosaic and Tobacco Rattle Viruses 
Input Prototypes of virus reactions  
Alg. Back-propagation, genetic algorithms 
Res. The method proved its potential to identify CGMMV and TRV 
Ref. Glezakos et al., 2010 

Pests 

Prob. To predict pod borer pest (Helicoverpa armigera) attack on chickpea (Cicer arietinum L.) 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T5M-4XJN4M9-1&_user=10&_coverDate=03%2F31%2F2010&_rdoc=1&_fmt=full&_orig=search&_cdi=5006&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=7a7da0e911d4f2a7bc6f0c53479c6705#secx4
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Input Data on climate, location and pest incidence: date, minimum and maximum temperature, 
humidity, rainfall, larvae/plant, eggs/plant, light and pheromone trap, location, season, area 
surveyed, plant protection type 

Alg. Bayesian regularization + Levenberg-Marquardt algorithm 
Res. Pest attack activities were successfully predicted for one week in advance, by using weather 

and pest surveillance data 
Ref. Gupta et al., 2000 

Prob. To predict the presence or absence of greater flamingo (Phoenicoterus rubber roseus) 
damages in rice fields in the Mediterranean 

Input Ecological variables of rice paddies 
Alg. Back-propagation 
Res. Neural networks successfully predicted flamingos incursions from a reduced set of ecological 

variables 
Ref. Tourenq et al., 1999 

3.2.10.5 CROP YIELD PREDICTION AND OTHER ESTIMATIONS  

It has long been accepted that farmer incomes increase or decrease depending on crop yields 

(Kaul et al.,2005). In an attempt to support farmers in their decision-making processes, it is 

important to understand the relationships between factors that result and explain crop yield. These 

factors are extremely complex in time and space. Success of management decisions lies in 

understanding the combined influence of soil, landscape, climate, genotype, and water availability 

on crop yield, as well as identifying the moments or variables that could be modified by farmers in 

pursuit of improving their crop yields. The search for modelling techniques capable of recognizing 

these influences is an essential first step into understanding and identifying these processes. 

  

It has been shown that ANNs are a powerful tool to tackle these problems. ANNs have been used 

in predicting yield in crops such as: corn, sugar beet, soybean and winter wheat, using databases 

of environmental data, plant features, and hyperspectral images. ANNs have not only been used in 

crop yield prediction but also in predicting the volume of harvestable pine barks, exploring the 

contribution of weather and other variables to some properties in winter cereal, as well as 

estimating the concentrations of pollutants in grass plant species. The following table 3.8 presents 

a more detailed description of these research activities. 

 

Table 3.8. Applications of ANNs in yield predictions and estimations 

 

Corn (Zea mays) and soybean (Glycine max) yield prediction 

Prob. To predict corn and soybean yields 
Input Data from different locations, on soil type and multiple combinations of monthly or weekly 

precipitation 
Alg. Back-propagation, multiple linear regression models 
Res. Neural network model showed the best yield prediction for both crops using data of weekly 

precipitation 
Ref. Kaul et al., 2005 
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Corn (Zea mays) yield prediction 

Prob. To predict corn yield under spatial and temporal variations of land management and soil 
conditions  

Input Topographic, climatological and soil properties data 
Alg. Several variations of Back-propagation (standard, batch, momentum, weight decay, 

quickprop, and resilient Back-propagation), forward search stepwise multiple linear 
regression, and pursuit regression 

Res. Performance of neural networks and linear methods was similar 
Ref. Park et al., 2005 

Prob. To identify the most important factors influencing corn yield (quantity) and quality 
Input Data on soil (electrical conductivity, organic matter, pH, chemical elements availability), 

landscape (slope, elevation) and genetic seed hybrid characteristics 
Alg. Back-propagation 
Res. Genetic characteristics (seed hybrid) was the factor which best explained variability in corn 

quality and yield variability 
Ref. Miao et al., 2006 

Prob. To predict corn yield 
Input Hyperspectral images, vegetation indexes 
Alg. Back-propagation, stepwise multiple linear regression 
Res. Neural networks and stepwise multiple linear regression performed better than models 

based only on vegetation indexes 
Ref. Uno et al., 2005 

Prob. To predict spatial variability in corn yield 
Input Soil and landscape characteristics (fertility, elevation, electrical conductivity and satellite 

imagery) 
Res. Neural networks successfully predicted spatial yield variability using fertility, elevation, 

electrical conductivity and spectral satellite image features 
Ref. Shearer et al., 2000 

Sugar beet (Beta vulgaris) yield prediction 

Prob. To predict sugar beet yield 
Input Physical and chemical characteristics of plants 
Alg. Predictive modular network (PRENOM) 
Res. The PRENOM network performed better than previous prediction approaches in estimating 

sugar beet yield 
Ref. Kehagias et al.,1998 

Wheat (Triticum aestivum ) yield prediction 

Prob. To predict dry land winter wheat (Triticum aestivum L.) grain yield by using topographic 
attributes 

Input Landscape topographic attributes – spatial coordinates 
Alg. Spatial analysis neural network algorithm, whereby a so-called “kernel function” accounts 

for the influence of neighbouring points in the input space 
Res. Spatial analysis neural network algorithm successfully estimated spatial patterns of dry 

land crop yield 
Ref. Green et al., 2007 

Predicting the volume of pine (Pinus brutia) bark 

Prob. To estimate volume of pine bark 
Input Measures of: outside bark diameter at breast height, inside bark diameter at breast height, 

bark volume of the tree 
Alg. Kalman’s learning algorithm for training and Cascade Correlation, non-linear regression 

approaches (logistic mode, Gompertz, Metcherlich, Morgan, Mercer, Florin, Verhulst) 
Res. Neural networks using the algorithms mentioned successfully estimated pine bark volume 
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Ref. Diamantopoulou, 2005 

Exploring the contribution of weather and other variables to some properties in winter 
cereal 

Prob. To predict phenological development, matter increase and soil moisture in winter cereal 
stands (wheat, rye and barley) 

Input Meteorological data  
Alg. Back-propagation 
Res. Neural networks successfully predicted phenological development 
Ref. Schultz and Wieland, 1997 

Estimating the concentrations of pollutants in grass plant species 

Prob. To estimate deposition and accumulation of pollutants (lead) in a grass plant species 
(Cynodon dactylon) 

Input Vegetation height, wind velocity, height of buildings, distance to adjacent street, traffic 
volume 

Alg. Back-propagation, multiple linear regression and stepwise multiple linear regression 
Res. Distance to adjacent streets, density, and height of buildings were the most important 

variables influencing lead concentration; ANN approach was more accurate than 
regression models 

Ref. Dimopoulos et al., 1999 

3.2.10.6 NATURAL RESOURCE MANAGEMENT 

When studying natural resource management, it is important to know the different interactions that 

take place between organisms, the environment and the changes occurring in the ecosystem. For 

instance, it is particularly useful to assess changes in an organisms’ distribution, and temporal 

change in abundance or composition, that enable us to plan strategies addressed to put in practice 

a more rational use of natural resources. Therefore, there is a need to develop approaches that 

support the decision making process in natural resource management. In the following table 3.9, 

there is a summary of a number of studies that model population dynamics in ecosystems. We also 

show a case of soybean variety identification in the area of preservation of genetic resources. 

 
 

Table 3.9. Applications of ANNs in natural resource management 

 

Prob. To classify and ordinate groups of vegetation 
Input 10 types of vegetation expressed as presence or absence 
Alg. SOM 
Res. SOM was a feasible tool in classifying (grouping similar samples) and ordering (arranging 

samples in an ordered manner) in ecology 
Ref. Foody, 1999 

Prob. To predict the presence of a honeysuckle (Lonicera morrowi) 
Input Physical site characteristics and soil data 
Alg. Back-propagation 
Res. Predictions of neural networks were closely matching field observations 
Ref. Deadman and Gimblett, 1997 

Prob. To predict richness and species composition in a tropical forest 
Input Satellite remote sensing data 
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Alg. Back-propagation, radial basis function (RBF), generalized regression neural networks, 
Kohonen SOMs 

Res. It was possible to estimate both richness and species composition by using remotely 
sensed data 

Ref. Foody and Cutler, 2006 

Prob. To evaluate intra- and inter-specific variations using soybean leaflets (Glycine max) 
Input Leaf shape images from 38 varieties 
Alg. Hopfield model, simple perceptron 
Res. The model was a suitable tool in varietal discrimination of soybean leaflets 
Ref. Oide and Ninomiya, 2000 

3.2.10.7 IRRIGATION AND FERTILIZATION 

Water and plant nutrients are very important factors for generating crop yield, because they are 

limiting factors in plant growth. While irrigation supplies the water required by crops according to 

their hydric requirements, when any other natural water source is limited, fertilization provides 

plants with the necessary elements for their healthy growth. According to Raju et al. (2006), water 

resources are becoming scarce due to factors resulting from human activities that reduce water 

availability for irrigation. This problem is more important in developing countries, where the 

population is growing faster than elsewhere, and where there is more contamination of water 

resources. In pursuit of a solution to this problem, a more accurate irrigation plan is needed in 

order to optimize water use. According to Broner and Comstock (1997), traditional knowledge-

based crop management expert systems include fertilization and irrigation, and knowledge from 

field experts and growers. This knowledge is commonly acquired from different regions, which may 

differ in climate, soils and crop. There is a necessity to “tune-up” these systems. ANNs are able to 

tackle this problem by building models exploiting training sets containing site-specific data. Table 

3.10 summarizes two studies dealing with irrigation and fertilization modelling in agricultural 

systems. 

 
Table 3.10. Applications of ANNs in irrigation and fertilization 

 

Fertilization 

Prob. To provide nitrogen fertilizer recommendations for growing malting barley 
Input Data of phosphorous and nitrogen recommendations generated by an expert system  
Alg. Back-propagation 
Res. The neural network adjusted itself to site-specific conditions with fewer than 5% site-specific 

patterns in the training set 
Ref. Broner and Comstock, 1997 

Irrigation 

Prob. To select among available alternatives for irrigation planning 
Input Labour, agricultural production, economic data 
Alg. SOM 
Res. SOM-based integrative approach, was a successful tool for modelling a multi-objective 

irrigation planning 
Ref. Raju et al., 2006 
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3.2.10.8 ECOPHYSIOLOGY 

Plant physiology is the study of the functions, or physiology, of plants. It comprises the study of 

processes such as plant water relations and plant responses to different stimuli. On the one hand, 

evapotranspiration and transpiration constitute a part of the water relation processes. 

Evapotranspiration includes: evaporation of water from soil and transpiration. This process is an 

important component of the hydrology cycle and decision makers in agriculture should be able to 

estimate more accurately irrigation water requirements using information on evapotranspiration 

and other water balance factors in order to maximize yield. On the other hand, plant growth is a 

process that can be influenced by many physiological factors, as well as by many environmental 

stimuli. The following table 3.11 presents a series of research results that used ANNs to estimate 

evaporation and transpiration, as well as three studies of neural networks emulating plant growth. 

 
Table 3.11. Applications of ANNs in ecophysiology 

 

Evaporation 

Prob. To estimate evapotranspiration 
Input Data of meteorological variables and the physical basis involved in the evapotranspiration 

process and estimates provided by empirical models 
Alg. Quickprop, empirical models (Hargreaves-Samani and Blaney-Criddle) 
Res. Neural networks showed their potential for accurately modelling evapotranspiration 
Ref. Arca et al., 2001 

Emulating plant growth 

Prob. To model plant growth by means of characterizing plant processes. Neural networks used to 
model transpiration process 

Input Air, canopy temperature, relative humidity, and plant type 
Alg. Back-propagation 
Res. Neural network model successfully modelled transpiration. However, it was necessary to 

identify certain plant physiology processes such as assimilation, allocation, and nutrient 
update for better modelling plant growth 

Ref. Zee and Bubenheim, 1997 

Prob. To analyse lettuce (Lactuca sativa ) growth characteristics under reduced gravity 
Input Biomass, chlorophyll content, plant width, and height 
Alg. Back-propagation 
Res. Neural networks were a useful technique for modelling plant growth under reduced gravity 
Ref. Zaidi et al., 1999 

Prob. To estimate biomass growth in winter cereals 
Input Site information, real observations and measurements, and weather information 
Alg. Back-propagation 
Res. The best network generating the desired biomass estimations used as inputs information 

of: temperature, field capacity of site, sum of precipitation since sowing, sum of global 
radiation since sowing and soil moisture in the upper soil layer 

Ref. Schultz et al., 2000 

 Forecasting maturity of fruit 

Prob. To forecast maturity index (MI) of green peas (Pisum sativum) 
Input Historical harvest information with weather and climate forecasts 
Alg. Back-propagation 



55 
 

Res. The model allows to harvest peas closer to their ideal harvest moment 
Ref. Higgins et al., 2010 

3.2.10.9 GREENHOUSE  

Greenhouses production is an agronomic practice where plants are grown under more controlled 

conditions than in conventional open field agriculture. This practice has some advantages such as 

increase in crop yield, whereas indoor climate factors can be controlled, pests and diseases can be 

drastically reduced, plants are healthier. It is also an ecological choice because herbicides are not 

required given that there are normally no weeds, and because it uses less water than growing 

plants outdoors. To generate an adequate environment for plant growth is a challenge in 

greenhouse growing. To address this problem, it has become necessary to use models able to 

simulate and predict greenhouse environment behaviour. These models should be able to identify 

those indoor conditions that need specific managing, resulting in the most suitable environment for 

plant growth. In this manner, decision makers could improve their crop yields. Table 3.12, 

summarizes some examples of prediction and simulation of greenhouse environments using 

ANNs. 

 
 

Table 3.12. Application of ANNs in greenhouse climate control 

 

Prob. To study the compensation of external climate disturbances on the basis of input-output 
linearization and decoupling, in the operation of ventilation and moisturizing of greenhouses 

Input Combination of biological and physical models 
Alg. Feedback-feed-forward linearization 
Res. ANN approach achieves input-output linearization and decoupling in the moisturizing and 

cooling of greenhouses 
Ref. Pasgianos et al., 2003 

Prob. To model greenhouse climate dynamics 
Input Outside weather conditions 
Alg. Bottleneck neural network in input reduction 
Res. Bottleneck neural network was useful to control greenhouses climate 
Ref. Seginer, 1997 

Prob. To optimize cultivation and storage of tomato (Solanum lycopersicum) 
Input Cultivation process: nutrient concentration of the growing solution. Storage optimization 

process: storage temperature 
Alg. Back-propagation, genetic algorithm 
Res. The expert system provided practically the same advice on strategy for cultivation and 

storage provided by a skilled grower 
Ref. Morimoto and Hashimoto, 2000 

Prob. To simulate and predict greenhouse environment at any moment in the production process 
Input Inside air temperature, humidity and carbon dioxide concentration values 
Alg. Physical models and black-box linear parametric models 
Res. The neural network was not an adequate technique to predict the inside climate  
Ref. Boaventura, 2003 

Prob. To identify lettuce (Lactuca sativa) growth and greenhouse temperature 
Input Values of daily averaged CO2 concentrations 
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Alg. NUFZY (a hybrid neurofuzzy approach), orthogonal least squares 
Res. NUFZY model proposed coupled with an orthogonal least squares training algorithm 

successfully predicted both lettuce growth and greenhouse temperature 
Ref. Tien and van Straten, 1998 

3.2.10.10 SOILS 

Soils provide plants with the physical support and essential elements for growing. Depending on 

chemical and physical characteristics, a given soil could either be suitable for healthy growth of 

plants or not. Understanding of phenomena associated with soil properties is particularly useful in 

making decisions about adequate management of environmental resources and improvement of 

productivity. Models simulating soil processes will help to understand important procedures and 

clarify problems related to agricultural activities. Several studies in soils have been done through 

neural networks. The following Table 3.13 presents some studies related to modelling soil 

processes such as: rainfall, run-off, soil temperature, soil water retention and pesticide 

concentrations, and on predicting chemical properties and classifying physical soil conditions. 

 
Table 3.13. Applications of ANNs in soils 

 

Classification of physical properties 

Prob. To classify soil texture 
Input Combinations of different classifications of soil particles according to size, and other soil 

parameters 
Alg. Back-propagation 
Res. Neural networks using as inputs soil properties such as: silt, clay, and organic carbon 

content, had a soil structure classification accuracy of around 79% in the training and 
validation phases 

Ref. Levine et al., 1996 

Prob. To classify soil texture 
Input Satellite aerial remote sensing and soil structure data 
Alg. Back-propagation 
Res. Spectral radiance and information of the most relevant variables for soil texture 

classification 
Ref. Zhai et al., 2006 

Prob. To predict soil texture 
Input Soil maps combined with hydrographic parameters derived from a digital elevation model 
Alg. Levenberg–Marquardt optimization algorithm, Back-propagation 
Res. ANN model can be used in the areas where the model was calibrated 
Ref. Zhao et al., 2009 

Classification of land cover 

Prob. To outperform a traditional land cover classification, known as National Land Cover Data 
(NLCD) 

Input Visible bands (blue, green, and red) of satellite images, textural information  
Alg. Back-propagation, decision trees 
Res. Overall accuracy of the proposed method had better classification results than the National 

Land Cover Data classification 
Ref. Arellano, 2004 
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Modelling soil processes 

Soil temperature 

Prob. To model soil temperature by testing different neural network topologies 
Input Universal Transverse Mercator (UTM) coordinates and elevation 
Alg. Levenberg-Marquardt, resilient and standard Back-propagation  
Res. Conjugate gradient, Levenberg-Marquardt, and resilient algorithms predicted soil 

temperature with a smaller error than Back-propagation. Best performance was achieved 
by a multi-layer perceptron with a single hidden layer 

Ref. Veronez et al., 2006 

Rainfall / run-off 

Prob. To model rainfall run-off by testing several traditional rainfall/run-off models 
Input Rainfall, historical seasonal and nearest neighbour information 
Alg. Gradient algorithm, traditional rainfall/run-off models (simple linear model, seasonally 

based linear perturbation and nearest neighbour linear perturbation model) 
Res. The neural network had higher efficiency values than traditional rainfall/run-off models 
Ref. Shamseldin, 1997 

Prob. To estimate soil erosion, dissolved P (DP) and NH4–N concentrations of rainfall-runoff from 
a land application site 

Input Rainfall/run-off, pH, conductivity (EC) 
Alg. Back-propagation 
Res. The ANN models derived from measurements of rainfall/run-off, electrical conductivity, EC 

and pH provided reliable estimates of DP and NH4–N concentrations 
Ref. Kim and Gilley, 2008 

Soil water retention 

Prob. To predict soil water retention by implementing three neural networks (A,B,C) varying in 
inputs and outputs 

Input Neural network A: data of topsoil, bulk density, organic matter, clay, silt and sand. Neural 
network B: metric potential (amount of work required to bring water into a soil from outside) 
Neural network C: soil structure 

Alg. Back-propagation 
Res. Neural network model A which used topsoil, bulk density, organic matter, clay, silt and 

sand as inputs had better prediction performance of soil water retention than the other 
models 

Ref. Koekoek and Booltink, 1999 

 

3.2.10.11 FIELD OPERATIONS AND AGRO-INDUSTRIAL PROCESSES 

Field operations carried out in agricultural systems, imply a large amount of capital investment and 

often have negative environmental implications. Field operations often use tractors and chemical 

applications which are not desirable in agricultural systems in terms of agricultural management 

and ecology. Sustainable agriculture deals with the preservation and management of natural 

resources such as soil, water and processes essential for maintaining adequate crop productivity. 

Sustainable agriculture can be regarded as a potential solution to reduce the negative 

environmental impact caused by field operations. The use of intelligent robot tractors or 

autonomous vehicles could be an alternative that could favour the principles of sustainable 

agriculture. These robot vehicles could outperform traditional field operations with regard to 
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efficiency, energy consumption and soil preservation. ANN together with other machine learning 

approaches have been applied in describing the motions of mobile robots and helped in guiding 

autonomous vehicle field operations. As far as agro-industrial processes are concerned, and when 

dealing with cereals, grain drying is an important process after harvesting. During this process, it is 

important to maintain seed quality and to avoid the development of diseases that can be promoted 

by humidity. There is a necessity to find methodologies to support decisions makers in agro-

industrial process, but also to determine the moisture content in the drying process of any 

agricultural system. 

 

 
Table 3.14. Applications of ANNs in field preparation/management operations and agro-industrial processes 

 

Field operations 

Prob. To create an optimal path for an agricultural mobile robot 
Input Information of location and velocity from a robot tested on an asphalt surface 
Alg. Back-propagation, genetic algorithm 
Res. The approach was suitable for finding an appropriate path. The neural network was accurate 

enough in simulating the robot path 
Ref. Noguchi and Terao, 1997 

Prob. To develop an intelligent vision system for autonomous vehicle field operations. 
Input Classification of crops and weeds 
Alg. Back-propagation, genetic algorithm, fuzzy logic 
Res. The mixture of techniques and algorithms was fully appropriate for guiding autonomous 

mobile robots used in precision agriculture.  
Ref. Noguchi et al., 1998 

Agro-industrial processes 

Prob. To determinate the relation between initial moisture of barley seed (Hordeum vulgare) to 
dried and physical parameters 

Input Air flow rate, inlet and outlet air temperatures and humidity levels 
Alg. Back-propagation (slightly modified for the specific research) 
Res. ANN was a viable technique for modelling the grain drying 
Ref. Farkas et al., 2000 
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3.3 BUILDING OF ANALYTICAL APPROACHES TO UNDERSTAND YIELD 
VARIABILITY 

 
Adapted from:  
 
Jiménez, D., Satizábal, H.F., Pérez-Uribe Andrés. (2007). Modelling Sugarcane Yield Using 

Artificial Neural Networks. In: Proc. of the 6th European Conference on Ecological Modelling 

(ECEM'07), Trieste, Italy, pp. 244-245. 

And  

Barreto, M., Jiménez, D., Pérez-Uribe, A., (2007). Tree-structured SOM component planes as a 

visualization tool for data exploration in agro-ecological modelling. In: Proc. of the 6th European 

Conference on Ecological Modelling (ECEM'07), Trieste, Italy, pp. 55-56 

3.3.1 METHODOLOGY  

This part of the research focuses on (a) finding the most relevant variables needed to model 

sugarcane yield through a supervised approach (MLP trained Back-propagation algorithm) 

(Bishop, 1995); and (b) improving visualization of the input–input (dependent variables) and input-

output (sugarcane yield) relationships by means of SOMs. 

3.3.1.1 DATABASES  

The sugarcane databases used in the following experiments are based on the type of information 

described in chapter 2.  

 

Two different datasets were implemented. In the case of the experiment conducted to determine 

the variables that contribute most to predict tons of sugarcane per hectare, the dataset included 

information from the year 2005. Due to the incapability of the Back-propagation algorithm to 

process missing data, we used this year’s data as they presented less missing data. Variables are 

described in Table 3.15. 

 

As far as the SOM approach is concerned, observations over a total period of seven years (1999 to 

2005) were considered as SOM can process datasets having missing values. This particularity of 

SOM also enabled us to additionally integrate more variables into this model (Table 3.16).  

 

Sugarcane is harvested between 11 and 18 months after planting or ratooning depending on the 

variety or local practices. Experts at CENICAÑA pointed out that the most critical periods for 

sugarcane growth are initial and final stages of plant development. The first months are essential 
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for vegetative structure formation, whereas during the last months the plant accumulates most of 

its saccharose that will ultimately be processed from the harvested plants. Therefore, in both 

experiments, the period of five months before harvest and the first five months after the preceding 

harvest were taken into account. Hence models were trained with monthly averages and all 

variables were scaled between [-1,1] in order to allow a comparison in magnitude. 

 

As far as the variables related to climate are concerned, only the data from a group of x months 

after sowing (denoted by xAS) and y months before harvest (denoted by yBH) were used. In this 

case study, five months after sowing and five months before harvest were taken into account. 

Thus, creating a set of ten variables for each climate variable. For instance, in the case of radiation 

the set is composed of: Ra1BH (radiation-the-first-month-before-harvest),..., Ra5BH (radiation-the-

fifth-month-before-harvest) and Ra1AS (radiation-the-first-month-after sowing),..., Ra5AS 

(radiation-the-fifth-month-after-sowing).  

 

The output target value of the MLP model was yield in tons of sugarcane per hectare (TCH). This 

variable, together with plant age, was provided by sugarcane mills. Water balance of the 

production zone was expressed in a scale from 0 to 8. This factor expresses the change in soil 

moisture, through the difference between water gains and water losses (equation 3.7). For a more 

detailed description of this procedure see Torres (1998). 

 

                Change in soil moisture = water gains - water losses                (3.7). 

 

Information of water gains and losses was provided by the network of pluviometers coupled with 

the estimated evapo-transpiration data.  

 

Finally, the weather variables used were extracted from the 34 weather stations. A total of 42 

variables and 861 events were included in the model.  
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Table 3.15. Variables considered in the identification of factors that contributed most to predict tons of 
sugarcane per hectare 

 
Variable/input Source Unit 

 

Classes  Total 
of 

inputs 

 

                    Climate variables  

Monthly accumulated precipitation Weather stations mm  AS, BH*  10  
Monthly average temperature Weather stations °C AS, BH  10  

Monthly average relative humidity Weather stations % AS, BH  10  
Monthly radiation average Weather stations cal/cm²/day AS, BH  10  

Other variables 

Plant age Sugarcane mills Month   1  

Water balance Regional maps - 0 - 8  1  

Output     42  

TCH Sugarcane mills Ton/ 
hectare 

    

*In the climate group, acronym AS indicates months After Seeding, and BH months Before Harvest 

 

In the case of the experiment aimed to the improve the visualization input–input and input-output 

dependencies by means of SOMs; variables related to soil and sugarcane variety were ordered 

using a presence/absence coding, where 1 represents presence and 0 absence. Water balance 

was used in a scale from 0 to 8 as aforementioned. As a result, total number of samples was 1328 

(Figure 3.8) whereas the vector which defines an agro-ecological event is composed of 47 

variables (Table 3.16). 

 

     Table 3.16. Variables included in the intelligent visualization experiment  

 

Variable  Source Acronym Classes Unit Total 
Variables 

Climate variables 
Monthly average 

temperature 
Weather 
stations 

T AS, BH*  10 

Monthly relative 
humidity 

Weather 
stations 

RH AS, BH % 10 

Monthly average 
radiation 

Weather 
stations 

Ra AS, BH cal/cm²/day 10 

Monthly 
precipitation 

Weather 
stations 

P AS, BH mm 10 

Other variables 
Order Soil maps Ord Ord1, Ord2, 

Ord3 
- 1 

Texture Soil maps Tex - - 1 
Soil depth Soil maps Dee - - 1 
Landscape Soil maps Ls Ls1, Ls2, Ls3 - 1 

Slope Soil maps Sl - - 1 
Water balance Regional 

maps 
WB 0-8 - 1 

Variety Sugarcane 
mills 

V V1, V2, V3 - 1 

Productivity Sugarcane 
mills 

P  Ton/ 
hectare 

47 

 

*In the climate group, acronym AS indicates months After Seeding, and BH months Before Harvest. 

All climate variables and productivity are continuous, whereas other variables are categorical 



62 
 

 
 

 
 

 
Figure 3.8. Illustration of the growth periods of sugarcane and the events included in the SOM 

 

3.3.2 RESULTS  

3.3.2.1 MLP (SUPERVISED APPROACH)  

The best neural network configuration was found after varying the number of hidden neurons. 

Finally, it was a MLP with a single hidden layer of ten neurons which gave the best results. In order 

to obtain a more consistent model, a group of 100 ANNs was trained using the Back-propagation 

algorithm. A more detailed and graphic explanation of these procedures is provided in chapters 4 

and 5 with the databases of Andean blackberry and lulo. In every of the 100 runs, the sensitivity 

matrix explained in chapter 3 was used to determine the factors that contribute most to predict tons 

of sugarcane per hectare. All the variables ordered by relevance are shown in Figure 3.9. 

 

The analysis of input relevance shows that plant age (months) and water balance and are the most 

important variables for the construction of the model. Figure 3.9 also shows that in this respect, 

precipitation is the less relevant agro-ecological variable.  

 

2   

1328   Events   

Soil   Climate   Variety   

Event 
    

Sowing   Growing   Harvest   

Months After  
  

Sowing (AS) 
  

Months Before  
  Harvest (BH) 

  

1   3   4   2   5   
1   3   4   5   
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Figure 3.9. Input variables of the neural network-based model ordered by relevance (the most relevant variables 
are shown on the left) 

 

Figures 3.10 and 3.11 show two profile graphics plotted using the two most relevant variables: 

plant age and water balance. Figure 3.10 shows that sugarcane plants gain weight with increasing 

plant age. According to experts at CENICAÑA this is logical if we consider that sugarcane is a 

plant that grows continuously until reaching a maximal height. Conversely, Figure 3.11 shows a 

decrease in weight with more water availability. In a previous work, plant age was also found as 

the most important variable when modelling sugarcane yield (CENICAÑA, 2006). Our analysis 

further identified water balance as a variable having strong yield modelling relevance. Indeed, this 

variable is involved in almost all processes we wanted to analyse (soil-plant-water-atmosphere 

relations). 

 

 

Figure 3.10. Input profile for the variable “plant age” using a MLP 
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Figure 3.11. Input profile for the variable water balance using a MLP 

 

3.3.2.2 INTELLIGENT VISUALIZATION (UNSUPERVISED APPROACH)  

In the case of SOM, an input matrix with 1328 vectors was created, corresponding to each event, 

and its 47 associated agro-ecological variables. It should be noted that the output of this sugarcane 

model is productivity (see section 3.3.2.1.1). Nevertheless, in this approach productivity was used 

as input in order to obtain its component plane to be compared with the component planes of the 

agro-ecological variables. Vesanto (1999) suggested this technique in an attempt to find 

associations between inputs and outputs.  

 

The matrix composed by events and agro-ecological variables was used to train a SOM of 400 

neurons (20x20). Component planes were projected into a new SOM composed of 400 neurons 

(20x20). Finally, the tree-structured component planes representation was applied to the last SOM, 

so then, obtaining the structure shown in Figure 3.13 

 

The SOM was sliced in order to visualize each component plane (additional information of this 

technique is provided in chapter 4), in an attempt to improve the analysis of the relationships 

between variables and/or their influence on the outputs of the system. Component planes show the 

relative distribution of each input variable (Kohonen, 1995). As mentioned previously, unlike the 

traditional approach where the number of pair-wise scatter plots increases quadratically with 

number of variables, using a SOM component planes-based visualization method, the number of 

sub-plots grows linearly with the number of variables (Himberg, 1998). In addition, it is possible to 

cluster variables with a similar pattern. After plotting all component planes, the relationship 

between variables can be easily interpreted. 



65 
 

 

The task of organizing similar component planes in order to find correlating components is called 

correlation hunting (Vesanto, 1999). However, when the number of components is large, it is 

difficult to determine which planes are similar to each other. Different techniques can be used to 

reorganize the component planes in order to perform this correlation hunting. The main idea is to 

place correlated components close to each other (Barreto and Pérez-Uribe, 2007).  

 
With the aid of the tree-structured representation, it was possible to analyse planes’ groups at 

several detail levels and to find relations between variables. The radiation during the first month 

after seeding (Ra1AS); radiation of the first month before harvest (Ra1BH); and presence of 

sugarcane variety two (V2) are more related to productivity than the other variables (Figure 3.13). 

In addition, a local correlation is observed between a majority of high radiation values and high 

productivity during these months (Figure 3.12).  

 

 

 
Figure 3.12. Lines displaying the patterns (prototypes) of the component planes: productivity, radiation of the first 
month after seeding (Ra1AS) and radiation of the first month before harvest (Ra1BH)  
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Figure 3.13. Tree-structured Self-Organizing Map component planes. Each plane represents a variable from the 
input space and its distribution before a self-organizing process is started. Red colours represent high variable 
values, blue colours low values. Radiation of the first month after seeding (Ra1AS), radiation of the first month 
before harvest (Ra1BH) and sugarcane variety two (V2) were most related to productivity 
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3.4 DISCUSSION AND CONCLUSIONS  

 
According to the literature review of applications of ANNs in agriculture, ANNs have been used to 

solve diverse regression or classification modelling problems in many agricultural domains. In 

general, ANNs performed better than traditional approaches. In several case studies, however, 

hybrid approaches gave more accurate predictions (Tien and van Straten, 1998; Boaventura, 

2003; Francl, 2004; Park et al., 2005; Uno et al., 2005). 

 

Many data sources can be used to train ANNs to build an agricultural model, there were studies 

that used satellite images, pictures, weather and soil data, morphological descriptions, landscape 

characteristics, and land management information. An important characteristic of ANNs is their 

ability to use diverse data from multiple sources. The most frequent model uses simple feed-

forward multi-layer perceptrons, trained with the Back-propagation algorithm or a variant of it.  

 

Neural network models are criticised for their “black-box” nature, including the tendency to 

overtrain, the difficulty of interpreting relations between the inputs and outputs, and the need for 

large enough datasets for correct training (Schultz et al., 2000; Sargent, 2001; Paul and Munkvold, 

2005).The resulting models are based on the interconnection weights between the neurons, which 

can be numerous, making it difficult to extract concrete conclusions. Thus, neural network models 

perform well on either classification or regression tasks, but it is not always clear how they use the 

input data to produce the outputs, which can complicate identifying the most relevant input 

variables. Nevertheless, the sensitivity matrix illustrated in section 3.2.6, based on the network 

parameters and input patterns, identified the variables that contributed most to predict sugarcane 

yield. The sensitivity matrix therefore provides tool to extract relations from neural network models.  

SOM is also a promising tool for “intelligent visualization” of data and for data exploration. It needs 

fewer pre-processing steps, can estimate missing data, and can extract information from 

databases of growers’ production experiences. (Kohonen, 1995; Himberg, 1998; Vellido et al., 

1999; Vesanto and Ahola, 1999; Aitkenhead et al., 2003; Moshou et al., 2004; Boishebert et al., 

2006;Barreto and Pérez-Uribe, 2007; Barreto, 2012).  

 

With sugarcane, sensitivity metric analyses showed that plant age and water balance were the 

most important variables for predicting yield (figures 3.9 to 3.11). SOM showed that variety and 

solar radiation during the first month after planting and during the last month before harvest were 

related to yield (figures 3.12 to 3.13). It is important to show that both results used different 

datasets. The unsupervised neural network, which was trained with 1999 to 2005 data (some of 

which were missing), with a more complete set of explanatory variables, found relations between 

radiation and yield. The supervised neural network was trained with climate data only for 2005 
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(because it is unable to process missing data) and did not identify radiation as controlling yield. In 

sugarcane, the non-supervised neural network was found to be a successful way to determine 

clusters with similar environments where there is insufficient data to define homogeneous clusters 

of agro-ecological zones (Barreto, 2012). 

 

Previous studies conducted by CENICAÑA using cropping events in order to explain yield, 

indicated that the response of sugarcane crop to variation in growing environment or management 

is frequently non-linear (Cock et al., 2011).  

 

In the case of sugarcane, expert knowledge provided modellers with guidelines for choosing the 

functions to analyse the non-linear yield responses to environmental and/or management 

variables. In the case of Andean blackberry and lulo there was no expert knowledge to provide 

guidelines for the functional response to be used in models that associate yield with variation in 

environmental or management parameters. Furthermore, there was no prior evidence to support 

the normality of the datasets. When normality tests were applied there was no evidence that for 

both datasets residuals were normally distributed (Figure 3.1).  

 

The experience with the sugarcane databases provided the basis for applying these advanced 

modelling techniques to analyse productivity in Andean blackberry and lulo in highly 

heterogeneous conditions of both environment and management.  

 

The feasibility of using both MLP and SOM to identify the most relevant variables, clustering, and 

visualization of input-input and input-output dependencies are illustrated in the next chapters. 

Databases were constructed using operational and participatory research methodologies, coupled 

with publicly-available environmental data for Andean blackberry and lulo. Both studies were 

published in high quality agronomic peer-review journals. 
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4 APPLYING MODELLING TECHNIQUES REFINED ON A SUGARCANE 
DATABASE TO IDENTIFY KEY PREDICTORS OF ANDEAN BLACKBERRY 
(Rubus glaucus Benth) YIELD 

 
Adapted from: Jiménez, D., Cock, J., Satizábal, F., Barreto, M., Pérez-Uribe, A., Jarvis, A. and 

Van Damme, P., 2009. Analysis of Andean blackberry (Rubus glaucus) production models 

obtained by means of artificial neural networks exploiting information collected by small-scale 

growers in Colombia and publicly-available meteorological data. Computers and Electronics in 

Agriculture. 69 (2): 198–208. 

ABSTRACT 

Site-specific information recorded by small-scale producer groups of Andean blackberry (Rubus 

glaucus Benth.) on their production systems and soil characteristics coupled with publicly-available 

environmental data was used to develop models of these production systems. MLPs and SOMs 

were used as computational models in the identification and visualization of the most important 

variables for modelling production of Andean blackberry. ANNs were trained with information from 

20 sites in Colombia where Andean blackberry is cultivated. MLPs predicted with a reasonable 

degree of accuracy the crop’s production response. Soil depth, average temperature, external 

drainage, and accumulated precipitation of the first month before harvest were critical determinants 

of productivity. A proxy variable of location was used to describe overall differences in 

management between farmers groups. The use of this proxy indicated that large differences in 

production could be assigned to management practices. The information obtained can be used to 

determine sites that are suitable for Andean blackberry production, and to propose management 

practices from sites with high productivity to sites with similar environmental conditions but which 

currently have lower levels of productivity. 

4.1 INTRODUCTION  

 
Research on Andean blackberry (Rubus glaucus) is limited. With the current levels of research 

intensity based on traditional plot experimentation varying individual factors that affect crop 

production, it is unlikely that technological packages can be developed to be used by growers 

Heterogeneous growing conditions and continuous production throughout the year of many tropical 

crops mean that a large number of experiments or treatments would be required to draw firm 

conclusions concerning the optimum management of these crops under their diverse production 

conditions. As it has been mentioned in the introduction (chapter 1), the situation of a tropical crop 

such as Andean blackberry contrasts strongly with that of, let us say, raspberries in a temperate 
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climate, where there is a well-defined harvest period and all management is focusing on generating 

optimal production in that period.  

 

In tropical perennial crops that are harvested throughout the year, the number of possible 

combinations of management practices are enormous. Thus, for example Andean blackberry 

production during the dry season may require totally different water and pest management 

practices to those required for the same crop in the wet season. A direct consequence of these 

multiple management options is continuous experimentation by producers of these crops, as it is 

the case for Andean blackberries.  

 

Experience with sugarcane and coffee in Colombia has shown that by collecting farmers’ 

production experiences generated with the naturally occurring variation in management and 

environment, crops’ responses can be modelled (Isaacs et al., 2007; Niederhauser et al., 2008, 

Cock et al., 2011). Given the high degree of heterogeneity in growth conditions, the lack of detailed 

information, and the structure of the data shown in chapter 3 (Figure 3.1a), we opted for a data-

driven modelling approach to provide information to growers on how to choose suitable sites for 

and to better manage their crops.  

  

Crop models are basically of two types which can roughly be described as mechanistic simulation 

models, and best fit or statistical models.  

 

Mechanistic models have the great advantage, at least in theory, that they can be extrapolated out 

of the range of variation for which data exists as they are based on the basic physiological 

functions of the plant and their response to variation in individual parameters in the environment. 

Furthermore, variables that affect observed variations in crop response to changes in environment 

can be identified in causal relationships. However, these mechanistic simulation models require 

detailed knowledge of the functional relationships between the multiple physiological and other 

processes involved in crop growth and development. This knowledge base simply does not exist 

for most tropical fruit species, and would take years to develop for a crop like the Andean 

blackberry that has received little attention from researchers in the past.  

 

Statistical or best fit models are generally simpler and rely upon relationships between variations in 

observed crop growth and development, and variations in growing conditions. Best fit models, 

however, have the dual disadvantage that they can neither be used to extrapolate beyond the 

range of variation encompassed in the initial datasets used to develop the models, and secondly 

they are not able to determine whether relationships are causal or merely associations. Best fit 

models do, however, have the advantage that they can be constructed with a limited knowledge of 
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the myriad individual processes and their interaction with variation in the environment that 

determine how a crop grows, develops and finally produces a useful product.  

 

Thus, with insufficient resources to obtain the knowledge required to develop mechanistic models, 

and the observation that best fit models have successfully been used in other crops; the latter 

approach was selected for Andean blackberry. 

 

Many of the best fit models used to predict crop yields are developed using existing information on 

both crop production and the environment. In the case of small farm crops, such as Andean 

blackberry, information on crop production is not readily available and certainly cannot readily be 

associated with the particular environmental conditions under which a particular crop was 

harvested. However, as we previously observed, every harvest is effectively an unreplicated 

experiment.  

 

Following on the premises of this research, (a) if it were possible to characterise production system 

in terms of management and environmental conditions; and (b) if we were able to collect 

information on the harvested product of a large number of harvesting events under varying 

conditions, and based on the approaches of operational and participatory research, it should be 

possible to develop best fit models for such production system. Hence, a first step in developing 

these models was the acquisition of data on Andean blackberry production and the 

characterization of the production systems.  

 

Agricultural systems are difficult to model due to their complexity and their non-linear dynamic 

behaviour (Basso et al., 2001; Jiménez et al., 2008, Satizábal et al., 2012). Moreover, the available 

information describing these systems frequently includes both qualitative and quantitative data. 

The former are often difficult to include in traditional modelling approaches. We surmised that 

models based on ANNs, are an appropriate alternative for developing models that can be used to 

improve production systems.  

 

ANNs have been successfully used to model agricultural systems (Hashimoto, 1997; Schultz and 

Wieland, 1997; Schultz et al., 2000). According to the survey presented in the preceding chapter, 

these techniques are appropriate as an alternative to traditional statistical models and mechanistic 

models, when the input data is highly variable, noisy, incomplete, imprecise and of a qualitative 

nature, as is the case with our Andean blackberry dataset.  

 

ANNs do not require prior assumptions concerning data distribution or the form of the relationships 

between inputs and outputs (Sargent, 2001; Paul and Munkvold, 2005; Nagendra and Khare, 
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2006). In general, ANNs provide pattern recognition capabilities that are superior to traditional 

linear approaches (Murase, 2000; Schultz et al., 2000; Noble and Tribou, 2007). They have 

become a powerful technique to extract salient features from complex datasets (Chon et al., 1996; 

Giraudel and Lek, 2001). Furthermore, when dealing with multiple variables they can be used to 

produce easily comprehensible low dimensional maps that improve visualization of data, and 

facilitate data interpretation (Barreto et al., 2007).  

 

Nevertheless, and as it has been mentioned in the conclusions of chapter 3, there are a number of 

disadvantages concerning the use of ANNs. Some of them are: its "black-box" nature, which 

makes it difficult to interpret relations between inputs and outputs; the difficulty of directly including 

knowledge of ecological processes, the tendency to overtrain; and the need for an adequate 

number of data to be properly trained (Schultz et al., 2000; Sargent, 2001; Paul and Munkvold, 

2005). 

 

An important first step in developing models that explain variation in yield is the identification of 

relevant variables that affect yield. Identification of these variables guides the collection of data that 

are required as inputs into the model and provide important insights about critical factors affecting 

yield.  

 

Several studies identify the most relevant variables, and explain responses in agriculture through 

the use of MLPs. For instance, Miao et al. (2006) implemented a neural network for identifying the 

most important variables explaining corn yield and quality. Using soil and genetic data, and a 

sensitivity analysis for each variable, they demonstrated that the hybrid was the most important 

factor explaining variability in corn quality and yield. In another study, Jain (2003) reported that the 

best frost prediction was obtained from relative humidity, solar activity and wind speed from 2 to 6 

hours before the frost event. Paul and Munkvold (2005) predicting severity of gray leaf spot of 

maize (Cercospora zeae-maydis) in corn (Zea mays L.), concluded that the best variables for 

predicting severity were daily temperature, nightly relative humidity, and nightly temperature. More 

recently, Jiménez et al. (2007) modelling sugarcane yield, suggested that crop age and water 

balance were most relevant factors for the modelling process.  

 

SOMs have also been used to improve visualization of input-input and input-output dependencies. 

Thus, for example Moshou et al. (2004) found that a waveband centred at 861 nm was the variable 

which best discriminated healthy from diseased leaves with yellow rust (Puccinia striiformis f. sp. 

tritici,) in wheat (Triticum spp). As another example, Boishebert et al. (2006) pointed out that 

growing year was an important factor in differentiating yield of strawberry varieties. 
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Extension officers, expert crop advisers and growers of Andean blackberry have reached a general 

consensus that optimum conditions for the crop are: soils with high organic matter content and a 

loamy texture, altitude between 1800 and 2400 Meters Above Sea Level (MASL); average relative 

humidity between 70 to 80 %, average temperature between 11 and 18 ° C, and 1500 and 2500 

mm of rainfall per year (Franco and Giraldo, 2002). 

 

The goal of this study was to demonstrate that collection of data from farmers’ production 

experiences (small-scale commercial producers) of Andean blackberry and its analysis by means 

of ANNs can provide growers with useful information to increase their productivity.  

4.2 MATERIALS AND METHODS 

4.2.1 DATA COLLECTION AND COMPILATION  

Corporación Biotec together with local Colombian Andean blackberry producers developed a 

simple aid based on a calendar (see chapter 2 and Appendix A2) which was used by farmers to 

record information on the production of each plot planted to blackberries on their farm. As farmers 

neither have the knowledge nor the wealth to assess their soil and terrain through formal 

methodologies, and as there is a lack of approaches, guidelines, books and field manuals for 

farmers or extension workers to characterise soils and terrain in situ, the RASTA system explained 

in chapter 2 was used to characterise soil conditions. Farmers were provided with RASTA kits and 

used these to characterise their soil and terrain (Alvarez et al., 2004) for 20 different sites in the 

departments of Nariño and Caldas (Colombia) (Figure 4.1).  

 

 

 

Figure 4.1. Map of the study area. Dots indicate the sites of production of Andean blackberry where data was 
collected 
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Information collected by farmers on the calendars and with RASTA was then transferred to the 

SSAFT project database illustrated in chapter 2. This database includes information on location, 

varieties, yield, and harvest time, and data on soil characteristics. A total of 488 yield records taken 

from the database were included in the analysis. These farmers’ production experiences or 

“events” provided producers’ estimates of the quantity (kg) of fruit harvested per plant for week 

(see figures 4.3 and Appendix A2). 

 

Weather stations in Colombia are often not close to the fields where under-researched crops like 

Andean blackberry are grown (see chapter 2).Therefore, the information provided by these stations 

rarely represents the climate of individual production sites, largely due to the large variation in 

altitude in the region. Hence, environmental information on each site was obtained from the 

coordinates (latitude and longitude). As it was indicated in chapter 2, with this GPS information, it is 

possible to extract environmental data from publicly-available environmental databases (Tables 2.3 

and 4.1) and to estimate the climatic conditions of any site that has been geo-referenced (see 

chapter 2). 

 

Thus, topography and landscape data was extracted from the Shuttle Radar Topography 

Mission (SRTM) (Farr and Kobrick, 2000) using version 3 dataset available from Consortium for 

Spatial Information (CSI-CGIAR). Long-term averages for monthly temperature and precipitation 

were obtained from WorldClim (Hijmans et al., 2005), whereas daily rainfall was extracted from the 

3b42 product of the Tropical Rainfall Measuring Mission (TRMM) database (Bell, 1987; Huffman et 

al., 1995; Kummerow et al., 1998) using the Version 3 dataset available from CSI-CGIAR. 

4.2.2 VARIABLE SELECTION 

Variables were selected taking into account as much information as possible on the available 

environmental conditions of each production site. As mentioned previously there is no reliable 

information about the climate associated with each production area. The scenario for soil data is 

even worse, as there does not exist a reliable soil map to obtain information for sites (see chapter 

2). 

 

Therefore, the process of defining variables was not only guided by expert knowledge (agronomic 

information provided by extension officers on those variables that were considered likely to 

influence production) but used the information recorded by farmers, available publicly-

environmental data and RASTA. Nonetheless, not all variables collected from these sources are 

useful to our models. Some of the source constraints include: the 1-km spatial resolution of the 

environmental databases that makes it difficult to get information of smaller areas; and the difficulty 
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to measure basic properties in RASTA such as pH, presence of carbonates, and hardpans (see 

Table 2.1).In addition other soil characteristics were not included into our modelling because we 

failed to see variability in them. For example, all soil structures in our study were granular (see 

Appendix A1). Hence, variables were chosen on a pragmatic basis, not only using the agronomic 

knowledge available but considering that they could also be readily recorded, and processed by 

the model.  

 

As far as productivity is concerned, for under-researched crops, it is typical to have more data for 

low yields than for high yields, which is a constraint from the data collected by small-scale farmers 

without access to information to increase productivity. As a consequence, in the resulting dataset, 

this dependent variable displayed more information on low than on high values of productivity of 

Andean blackberry (Figure 4.2). 

 

 
 

Figure 4.2. Histogram displaying yield data distribution of Andean blackberry 
 

 

The information compiled in the database for Andean blackberry consisted of 28 variables (Table 

4.1). This information included binarized categorical variables (see chapter 3) describing 

geographical position (large areas for departments, specific areas for particular localities within 

departments) and variety (thorny blackberry or thornless blackberry), and environmental variables 

based on landscape, soil and climate (Table 4.1). The climate data was chosen to represent the 

critical period for yield formation which is from first appearance of flowers to fruit ripening (see 

chapter 2). Experienced agronomists and extension officers had warned us of frequent outbreaks 

of Botritis (Botrytis cinerea) in the stage of flower initiation, which affect yield and are related to 

weather conditions at that time. Each yield observation was associated with the environmental 

variables taking into account the date of harvest (Figure 4.3). 
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Scatter plots representing continuous variables and yield were produced in order to facilitate 

visualization (Figures 4.4a to 4.4o).  

 

Yield : Kg/plant/week 
Yield : kg/plant/week 

Temperature average 
Temperature range 
Accumulated precipitation  

Temperature average 
Temperature range 
Accumulated precipitation  

RASTA 

Slope 
Int. drainage  
Ext. drainage 
Effective soil depth 

Slope 
Internal drainage  
External drainage 
Effective soil depth 

Altitude 
Altitude 

SRTM 

WORLDCLIM 

TRMM 

Data without  
temporal  
context 

Data without  
temporal  
context 

Data with  
temporal  
context 

Data with  
temporal  
context 

Harvest month and  
three months  
before harvest 

Single data 

INPUTS 

OUTPUT 

Precipitable water 
Precipitable water 

 

Figure 4.3. Variables selected for the construction of the Andean Blackberry yield model 

 
Table 4.1. Inputs used for development of Andean blackberry yield model 

 
Input Variable Units Abbreviation Source Ranges 

1 
a
Thorn or Thornless blackberry - AB_Thorn_N AEPS - 

2 
a
Nariño – Caldas (Large geographic area) - Nar-Cal  AEPS - 

3 
a
Nariño, la union, chical alto (specific geographic area) - Na_un_chical AEPS - 

4 
a
Nariño, la union, cusillo alto (specific geographic area) - Na_un_cusal AEPS - 

5 
a
Nariño, la union, cusillo bajo (specific geographic area) - Na_un_cusba AEPS - 

6 
a
Nariño, la union, la jacoba (specific geographic area) - Na_un_lajac AEPS - 

7 
b
Caldas Riosucio zona rural (specific geographic area) - Cal_riosu_zr AEPS - 

8 
b
Altitude MASL Srtm SRTM 1297-2399 

9 
b
Slope degrees Slope SRTM 2-50 

10 
b
Internal drainage - IntDrain AEPS  1-3 

11 
b
External drainage - ExtDrain AEPS  1-3 

12 
b
Effective soil depth cm EffDepth AEPS  25-80 

13 
b
Precipitable water of the harvest month  Trmm_0 TRMM 0.4 -8

c
 

14 
b
Precipitable water of the first month before harvest mm Trmm_1 TRMM 0.5-8

c
 

15 
b
Precipitable water of the second month before harvest mm Trmm_2 TRMM 0.5-12

c
 

16 
b
Precipitable water of the third month before harvest mm Trmm_3 TRMM 0.5-12

c
 

17 
b
Average temperature of the harvest month °C TempAvg_0 WORLDCLIM 13-26 

18 
b
Temperature range of the harvest month  °C TempRang_0 WORLDCLIM 6-12 

19 
b
Accumulated precipitation of the harvest month mm PrecAcc_0 WORLDCLIM 43-360 

20 
b
Average temperature of the first month before harvest °C TempAvg_1 WORLDCLIM 13-25 

21 
b
Temperature range of the first month before harvest °C TempRang_1 WORLDCLIM 6-11 

22 
b
Accumulated precipitation of the first month before harvest mm PrecAcc_1 WORLDCLIM 120-360 

23 
b
Average temperature of the second month before harvest °C TempAvg_2 WORLDCLIM 13-25 

24 
b
Temperature range of the second month before harvest °C TempRang_2 WORLDCLIM 7-10 

25 
b
Accumulated precipitation of the second month before 

harvest 
mm PrecAcc_2 WORLDCLIM 117-360 

26 
b
Average temperature of the third month before harvest °C TempAvg_3 WORLDCLIM 13-24 

27 
b
Temperature range of the third month before harvest °C TempRang_3 WORLDCLIM 7-12 

28 
b
Accumulated precipitation of the third month before harvest mm PrecAcc_3 WORLDCLIM 90-358 

a
Categorical variables- units are classes of each variable 

b
Continuous variables 

c 
Values divided by 10 according to the data provided by the satellite 
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(a)       (b)   

 
(c)         (d)  

 

 
(e)          (f) 

 
 (g)           (h)  
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(i)             (j) 

 
(k)        (l) 

 
(m)        (n) 

         
(o) 

Figure 4.4. Scatter plots of continuous variables vs. yield. (a) srtm, (b) slope, (c) effective soil depth, (d) precipitable 

water of the harvest month, (e) precipitable water of the first month before harvest, (f) precipitable water of the second 
month before harvest, (g) average temperature of the harvest month, (h) temperature range of the harvest month, (i) 
accumulated precipitation of the harvest month, (j) average temperature of the first month before harvest, (k) temperature 
range of the first month before harvest, (l) accumulated precipitation of the first month before harvest, (m) average 
temperature of the third month before harvest, (n) temperature range of the third month before harvest, (o) accumulated 
precipitation of the third month before harvest 
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4.2.3 COMPUTATIONAL MODELS 

4.2.3.1 MLP  

ANNs software FENNIX was used in order to train a feed-forward neural network. This software is 

a graphical interface for a neural network simulator which allows fast experimentation on analysis. 

It can be downloaded from http://fennix.sourceforge.net/. FENNIX has been implemented and 

designed at the HEIG-VD the SSAFT project. The software is used by statisticians, students, and 

agronomists, as well as experts on artificial neural network modelling in many countries 

(http://sourceforge.net/projects/fennix/files/FENNIX.zip/stats/map?dates=2012-01-25%20to%202012-11-11).  

 

A multilayer perceptron (Bishop, 1995) was used to model Andean blackberry yield, in such a 

manner that the output of the neural network, the continuous yield variable, is determined by the 28 

variables we used as inputs. The Back-propagation algorithm was employed in order to train the 

neural networks (Bishop, 1995). The algorithm is a descent-based optimizer that minimizes the 

difference between the desired output of the model (in the training dataset) and the actual output of 

the network, e.g. the Mean Square Error (MSE) (see chapter 3).  

 

The mechanism for testing model performance was the split-sample approach explained in chapter 

3. Network topology is an important issue in training a neural network model. The selection of the 

number of neurons in the hidden layer was made by comparing neural networks having 1 to 10 

hidden units. This comparison was carried out by simple implementation of a bootstrap validation 

scheme (Efron, 1983). Thus, each network was tested by performing split-sample validations 100 

times, whereupon the different values of the averaged MSE were compared in order to determine 

the network having the best performance based on error criteria. The topology with the lowest MSE 

over the validation subset had 5 units in the hidden layer neural network (Figure 4.5) and was then 

selected for further development. 

 

http://www.linkedin.com/redirect?url=http%3A%2F%2Ffennix%2Esourceforge%2Enet%2F&urlhash=JrAW&_t=tracking_anet
http://sourceforge.net/projects/fennix/files/FENNIX.zip/stats/map?dates=2012-01-25%20to%202012-11-1
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Figure 4.5. Validation error (MSE) of artificial neural networks with different numbers of neurons in the hidden 
layer 

 

In FENNIX, it is possible to work with so called ensemble networks. Thus, an ensemble of 100 

networks with the selected topology but with different initialization was built and tested in order to 

improve the generalization capabilities of the model (Dietterich, 2000; Brown, 2005). Neural 

networks ensembles are less affected by local minima, and have been shown to outperform their 

single components (Yao, 1998). In our case, the source of diversity among models was the starting 

point of the Back-propagation algorithm (random initialization). The resulting model output was 

then calculated by averaging the outputs of the 100 individual networks. Finally, to identify the 

variables which contribute most to yield; an analysis was conducted by means of the relevance 

metric based on sensitivity described in chapter 3.  

4.2.3.2 SOM  

SOM (Kohonen, 1995) is a non-supervised algorithm which combines clustering and visualization. 

SOM maps high-dimensional datasets in a low-dimensional output space (generally a grid of two 

dimensions). Observations with similar characteristics appear clustered together in the low-

dimensional map produced. Such a map facilitates exploratory, visual analysis of the clusters and 

relationships between the variables of a complex dataset. However, a SOM does not preserve 

distance information. In order to address this problem, the topology is separated, and standard 

clustering methods are applied to the SOM prototype vectors. Then, the clusters are displayed on 

a lattice (Vesanto and Ahola, 1999; Barreto and Pérez-Uribe, 2007). 

  

In order to implement SOM as one of the computational models in the present research, the 

software package MATLAB 7.0 and function package SOM toolbox were used. This latter package, 

developed by the Laboratory of Computer and Information Science at Helsinki University of 

Technology. The package is documented and downloadable from 
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http://www.cis.hut.fi/somtoolbox/download/. The software was used to (a) train a Kohonen map 

with a total of 488 yield records, associated with each event and its 28 variables, creating an input 

matrix trained with a SOM of 100 neurons (10 x 10); (b) cluster the prototypes of the resultant 

bidimensional map through the K-means algorithm and Davies-Bouldin index mentioned in chapter 

3; and finally (c) visualize dependencies between clusters shown in the Kohonen map by a 

“component plane” representation, where several lattices, one for each variable, are shown side by 

side. 

 

The variables are visualized in a lattice called a component plane with a variable-specific colouring. 

The component plane representation is useful in finding dependencies between variables. These 

dependencies are perceived as similar patterns in identical areas of different component planes 

(Figures 4.9 - 4.16). The dependency search can be eased by organizing the component planes 

such that similar planes are positioned near to each other (Vesanto and Ahola, 1999). As the SOM 

toolbox was built using MATLAB script language, scripts for each of these a, b, and c steps are 

shown in appendix A3.  

 

4.3 RESULTS AND DISCUSSION  

4.3.1 MODEL PERFORMANCE  

The neural network model was evaluated to ensure that its performance was acceptable for our 

purpose of determining the relationship between yield of the Andean blackberry and characteristics 

of the sites where it is grown. To evaluate the model’s performance, we computed the coefficient of 

determination of the real Andean blackberry's yield and the yield predicted by the model only using 

the data from the “hold-out” validation dataset (Figure 4.6). The coefficient of determination (0.89) 

indicates that the model explained close to 90% of total variation, which we considered sufficient to 

proceed to the next step of determining input relevance. 

 

The fit between real yield values and predicted values taken from the validation data was close at 

low yield levels, but was poor over the range of high levels (between 69 and 93, see Figure 4.7). At 

the same time, model accurately predicted expected yields at high yield levels. The model can be 

used to determine ex ante conditions and management associated with high yields, which can be 

used to provide guidelines for farmers on how to obtain high yields. It can also be used to identify 

site characteristics that are inevitably associated with poor crop performance and can thus be used 

to indicate to farmers that a particular site and management combination is not a viable option. 

 

  

http://www.cis.hut.fi/somtoolbox/download/
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Figure 4.6. Scatter plot displaying multilayer perceptron predicted yield versus real Andean blackberry yield, using 
only the validation dataset 

 

 

 
Figure 4.7. Line with markers displaying the fitness of the predicted and real Andean blackberry yield through the 
observations from the validation dataset (yield values upwardly ordered) 

4.3.2 MODEL INTERPRETATION 

We assessed yield response to changes in the 28 variables used in the model by calculating the 

sensitivity of the model output with respect to each of the inputs through the sensitivity metric 

described in chapter 3. This metric expresses the amount of change of the output with variations of 

the inputs. The nine most important variables identified by the sensitivity metric were: soil depth; 

y = 0.8927x + 0.0157

R² = 0.892

-0.2

0.3

0.8

1.3

1.8

-0.2 0.3 0.8 1.3 1.8

P
re

d
ic

te
d

 y
ie

ld
 (

k
g

/p
la

n
t/

w
ee

k
)

Real yield (kg/plant/week)

Predicted

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

A
n

d
ea

n
 b

la
ck

b
er

ry
 y

ie
ld

 (
k

g
/p

la
n

t/
w

ee
k

)

Observations (validation dataset) 

Real

Predicted



83 
 

average temperature of the first month before harvest; specific geographical areas Nariño-La 

Union-Chical Alto and Nariño-La Union-Cusillo Bajo; average temperature of the harvest month; 

average temperature of the second month before harvest; average temperature of third month 

before harvest; external drainage and accumulated precipitation of the first month before harvest 

(Figure 4.8). As Figure 4.8 also shows, there was a moderately sharp drop in the sensitivity after 

the ninth variable. A Wilcoxon test at an alpha level of 5% (Table 4.2) indicated that the means of 

this group of nine variables were significantly different (p=0.0001) from the rest of variables. 

Hence, these nine most important variables were selected for further analysis.  

  

 

Figure 4.8. Sensitivity distribution of the model with respect to the inputs 

 

Table 4.2. Wilcoxon test at an alpha level of 5% comparing means of relevance between the nine most important 
variables identified by the sensitivity metric and means of the rest of variables 

 

T T 
(expected value) 

T 
(variance) 

 

Z 
(observed value) 

 

Z 
(critical value) 

 

Two-tailed 
p-value 

 

171.000 
 

85.500 
 

527.250 
 

3.724 
 

1.960 
 

0.0001 
 

4.3.3 VISUALIZATION OF THE RELATIONS BETWEEN THE VARIABLES FOUND AS 
RELEVANT BY THE SENSITIVITY METRIC AND CLUSTERS WITH SIMILAR 
PRODUCTIVITY OF ANDEAN BLACKBERRY  

To further analyse the effects of the nine variables, the Kohonen map was trained with the same 

observations we employed to train the MLP. The resulting bidimensional map is composed of 

vector prototypes which associate topological information of the original 28 variables for Andean 

blackberry yield (Figure 4.9a). These prototypes were clustered by using the K-means algorithm. 
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According to the Davies Bouldin index, the map was divided into 6 clusters exhibiting similar 

features that influence Andean blackberry productivity (Figure 4.9b).  

 

Figure 4.9. Kohonen map showing the resulting clusters: (a) U- matrix displaying distance among prototypes. The 
scale bar (right) indicates the values of distance. The upper side exhibits high distances, whilst the lower displays 
low distances. (b) Kohonen map displaying the 6 clusters obtained after using the K-means algorithm and the 
Davies-Bouldin index 

4.3.3.1 COMPONENT PLANES AND VARIABLE DEPENDENCIES  

In order to improve the visualization of the dependencies between the clusters shown in the 

Kohonen map (Figure 4.9b), the “component planes” of Andean blackberry productivity (Figures 

4.10a and 4.10b), and the variables previously identified as the most relevant for modelling Andean 

blackberry yield: effective soil depth (Figure 4.11), average temperature of the harvest month, 

average temperature of the first, second and third months before harvest, (Figures 4.12a - 4.12d), 

two specific geographic areas (Figures 4.13 and 4.14), external drainage (Figure 4.15), and 

accumulated precipitation of the first month before harvest (Figure 4.16), were separated from the 

Kohonen map and displayed as lattices.  

4.3.3.1.1 PRODUCTIVITY PLANE 

Yields greater than 1.16 Kg/plant/week were associated with regions in cluster 2 on the Kohonen 

map (Figures 4.10a and 4.10b).Yield values between 0.018 and 1.16 Kg/plant/week correspond to 

clusters 1, 3, 4, 5 and 6 in the Kohonen map. Whereas clusters 3, 4, and 6 were the clusters with 

lowest yields. In summary, the range of yield for low values was between 0.018 g and 0.920 Kg 

(clusters 3, 4, and 6) for medium 0.920 kg and 1.16 kg (cluster 5, and 6) and for high between 1.16 

Kg and 2.08 Kg (cluster 2). 
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Figure 4.10. (a) Component plane of Andean blackberry yield, the scale bar (right) indicates the range value of 
productivity in kg/plant/week. The upper side exhibits high yield values, whereas the lower displays low values; (b) 
Kohonen map displaying the resultant 6 clusters and their labels according to yield values  

4.3.3.1.2 EFFECTIVE SOIL DEPTH 

 

Inspection of Figure 4.11 indicates that high yields are obtained when effective soil depth is greater 

than around 65 cm (cluster 2). Low yields were also found on soils with depths greater than 65 cm 

(clusters 3, 4 and 6) suggesting that other soil factors not included in the analysis were affecting 

productivity, presumably soil characteristics such as presence of rock fragments, soil structure or 

salinity and sodicity. As it was aforementioned, in this study there is absence of soil variables that 

were difficult to measure by means of RASTA and therefore were not integrated into the model. 

Without having these data it is not possible to draw firm conclusions on the factors that might affect 

yield in soil depth deeper than 65 cm.  

 

Most roots of Andean Blackberry are concentrated in the first 30 cm of soil, with some roots found 

at depths of 50 to 105 cm (Franco and Giraldo 2002). Combining the expert opinion of Franco and 

Giraldo (2002) with the information from farmers’ field points, there is a minimal effective soil depth 

for high yields of Andean Blackberry of about 65 cm. Below that soil depth yields will be medium 

(clusters 1 and 5).  
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Figure 4.11. Component plane of effective soil depth. The scale bar (right) indicates the range value in cm of soil 
depth: the upper side of the scale exhibits high values, whereas the lower displays low values  

4.3.3.1.3 AVERAGE TEMPERATURE OF THE HARVEST MONTH AND AVERAGE TEMPERATURES OF THE FIRST, SECOND 

AND THIRD MONTHS BEFORE HARVEST 

Kohonen maps for temperature of the first, second and third months before harvest were similar 

(Figure 4.12). MLP showed that average temperature of the first month before harvest was more 

important than the other temperatures (that occurs due to small differences captured to better fit 

the output). However, in the tropical environment the monthly variation in temperature is small, 

particularly in comparison with the spatial variation in temperature which is largely associated with 

differences in altitude in the Andean region. 

 

We consider that the differences in input relevance in terms of temperature of the different time 

periods before harvest captured by the multilayer perceptron are not necessarily causal, but that 

they were a product of the process of learning in order to better fit the output. Taking into account 

both the process of determining relevance and the similarity of temperatures for different months in 

each site, temperatures were analysed as the three months average rather than separately for 

each month. From this analysis, it is immediately evident that cluster 6 with temperatures of about 

24 °C is not well suited to allow high yields of blackberries (Figure 4.12). Clusters 1, 2 and 5 with 

medium to high yields are related to temperatures between 16 and 18°C (Figures 4.12a - 4.12d), 

whereas low yields appear to be associated with temperatures in the range of 14-15°C. 

 

Andean blackberry experts suggest the optimal temperature for a healthy growth of this crop is 

between 11 and 18°C. We suggest a narrower temperature range with 16 to 18 °C to be 
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associated with high yields, with lower yields coinciding with temperatures above or below this 

range.  

 

Figure 4.12. Component planes of the average temperature: (a) temperature of the harvest month; (b) average 
temperature of the first month before harvest; (c) average temperature of the second month before harvest; and 
(d) average temperature of the third month before harvest. In all figures, the scale bar (right) indicates temperature 
range value in °C, the upper side exhibits high values, whereas the lower displays low values 

4.3.3.1.4 GEOGRAPHICAL AREAS AS PROXY FOR CROP MANAGEMENT  

Proxies can be used to estimate the effect of either immeasurable or unobservable variables on a 

given phenomenon (Thomas et al., 1990; Steckel, 1995; Goodman et al., 1996; Adami et al., 1999; 

Filmer and Pritchett; 1999; Montgomery et al., 1999). In our study, geographical areas were 

integrated into the model with the aim of capturing the effect of variables that were not directly 

measured. Geographical proxies were added to the analysis specifically to take into account 

management and social factors which were not captured by the data collection process and which 

are likely to be of importance and related to the geographic location of a site.  

 

In sugarcane, certain farmers consistently obtain higher yields than others even in the same 

edaphic-climatic conditions; the farmers that obtain the higher yields belong to a particular cultural 

and socio-economic group that apply better management practices (Isaacs et al., 2007; Cock et 
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al., 2011). The localities Nariño-La Union-Chical Alto (Figure 4.13), and Nariño-La Union-Cusillo 

Bajo (Figure 4.14), were associated with cluster 2 which is characterized by the highest yields. As 

will be shown in Chapter 5, some farmers in a specific locality obtained higher yields than others, 

even under similar environmental conditions. This implies that the differences are due to 

management practices associated with the particular locality 

 

 

 
Figure 4.13. Component plane of the specific geographic area Nariño-La Union-Chical Alto. The highest values 
indicate presence and the lowest absence as they are categorical variables 

 

 

 
Figure 4.14. Component plane of the specific geographic area Nariño-La-Union-Cusillo Bajo. The highest values 
indicate presence and the lowest absence as they are categorical variables 
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4.3.3.1.5 EXTERNAL DRAINAGE AND ACCUMULATED PRECIPITATION OF THE FIRST MONTH BEFORE HARVEST  

Scrutiny of the external drainage lattice (Figure 4.15) gave no obvious clues as to how drainage 

affects yield of blackberries. In appendix A1, it can be seen how external drainage is categorized 

as, excessive, good moderate, and slow. Continuous values have been assigned to this variable 

for each category. Thus, according to the dataset, which was used in this study 3 indicates good or 

fast drainage, 2 moderate drainage, and 1 poor or slow drainage. 

 

In fact, medium yield in cluster 5 is associated with poor external drainage; whereas cluster 2 

which has high yields external drainage is highly variable. However, in all clusters with medium or 

high yields, poor external drainage is associated with low precipitation of the first month before 

harvest (Figure 4.16): This does not only appear to be true from the Kohonen maps, but it also 

makes agronomical sense. Good external drainage is evidently more important when rainfall is 

higher. 

 

This example clearly indicates how visual inspection of Kohonen maps can assist in understanding 

how various factors affect growth and development of a crop and the interactions between them.  

 

Further inspection of Figures 4.15 and 4.16 indicates that excellent external drainage is not 

sufficient to overcome the effects of high or moderate precipitation with moderate external drainage 

in cluster 3. Overall, there was a tendency for low rainfall to be advantageous but there were a 

number of exceptions. However, when the two variables, e.g., precipitation of the first month before 

harvest and external drainage are taken together, it is clear that low rainfall accompanied with 

varying external drainage conditions can provide good yields, but that heavier precipitation during 

the first month before harvest with poor drainage is not conducive to high levels of productivity. 

 

 

Figure 4.15. Component plane of external drainage. In the scale bar (right), the highest value 3 indicates good or 
fast drainage, 2 moderate drainage, and 1 poor or slow drainage 
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Figure 4.16. Component plane of the accumulated precipitation of the first month before harvest. The scale bar 
(right) indicates the range value in mm of rainfall; the upper side of the scale exhibits high values, whereas the 
lower displays low values 

4.4 CONCLUSIONS  

 
Farmers’ production experiences collected in the Andes coupled with information from publicly- 

available environmental databases were successfully used to characterise specific production 

events for Andean blackberry and to relate production to site and time specific events. Analysis 

focused first on identifying those variables that explain most yield variability by means of MLP 

neural networks, then using the SOM as a tool for dimensionality reduction and visualization of 

input-input and input-output dependencies. 

 

ANNs were found to be an effective tool for managing the highly variable, noisy, and qualitative 

nature of agricultural information collected by farmers and linked to existing publicly-available 

environmental databases. MLPs were used to develop a model based on a dataset with 28 

variables. This model explained close to 90% of variation in a validation set. The relevance metric 

based on the use of network parameters and input patterns described in chapter 3, was used to 

identify the most important variables in determining variation in yield. SOM was then used to group 

Andean blackberry yield from different sites according to similarity of growth conditions and 

management.  

 

Data was not available to directly evaluate management practices, so localities were used as a 

proxy for management. 

 

The SOM provided a straightforward manner to visualize the distribution of the variables that 

affected yield. “Component planes” generated by SOM illustrated the association of these variables 
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with yield and identified two geographic areas as highly productive. The optimal combination of 

factors for high yields of Andean blackberry are an average temperature between 16°C and 18°C, 

minimal effective soil depth of about 65 cm, and low rainfall (between 120 and 210 mm) during the 

first month before harvest in poor external drainage locations, or moderate to high rainfall (between 

210 mm and 360) in better-drained areas. Nonetheless, given the nature of the modelling tool 

being used (black-box model), these results have to be taken as exploratory, and should be 

interpreted by experts in the specific field of application of the data. 

 

The identification of geographic areas with higher yields than those that would be expected solely 

from environmental conditions suggests that farmers in those geographical areas were managing 

their crops particularly effectively. However, there was not sufficient information to precisely 

determine which management factors led to these high yields. At the same time, the mere 

identification of areas with farmers that properly manage their crops, offers the chance for these 

farmers to disseminate their knowledge to other farmers with similar environmental conditions so 

that they too can improve yields.  
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5 COMBINATION OF DATA-DRIVEN APPROACHES TO INTERPRET VARIATION IN 
COMMERCIAL PRODUCTION OF LULO (Solanum quitoense Lam)  

 

Adapted from: Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Van Damme, Pérez-

Uribe, A., and Barreto, M., 2010. Interpretation of Commercial Production Information: A case 

study of lulo, an under-researched Andean fruit. Agricultural Systems. 104 (3): 258-270  

 

ABSTRACT 

 
Years of agronomic experimentation have led to a wealth of knowledge on crop responses to 

variation in growth environments. This knowledge has been used to develop empirically-based 

crop models which quantify crop response to variations in growing conditions. The detailed level of 

knowledge to develop effective crop models only exists for those crops which have been the 

subject of intense research. For many minor and some major crops, models are currently not 

available. Moreover, it would take years of experimentation using traditional approaches to build up 

the necessary knowledge base to develop them, particularly in perennial crops such as many 

tropical fruit species. We suggest that an alternative approach to years of research following the 

top-down model could consist of observing crops under varying management and different 

environments in the field. 

 

Analysis and interpretation of farmers’ production experiences data in the context of naturally 

occurring variation in environmental and management, as opposed to controlled experimental data, 

requires novel approaches. Information was available on both variation in commercial production of 

lulo (Solanum quitoense Lam), and the associated environmental conditions in Colombia. This 

information was used to develop and evaluate procedures for the interpretation of variation of 

farmers’ production experiences. The most effective procedures for interpreting yield variation 

depended on expert guidance: it was not possible to develop a simple effective one-step 

procedure, but rather an iterative approach was required to analyse and interpret commercial 

production data of lulo. 

 

The most effective procedure was based on the following steps. First, highly correlated 

independent variables were evaluated and those that were shown to be duplicates were 

eliminated. Second, regression models identified the environmental factors most closely 

associated with the dependent variable of fruit yield. Environmental factors associated with 

variation in fruit yield were then used for more in depth analysis, whereas environmental variables 

not associated with yield were excluded from further analysis. 
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Linear regression and multilayer perceptron regression models explained 65-70% of total variation 

in yield. Both models identified three of the same factors as being important, whereas the 

multilayer perceptron based on a neural network approach identified one location as an additional 

factor. Third, the three environmental factors common to both regression models were used to 

define three Homogeneous Environmental Conditions (HECs) using Self-Organizing Maps 

(SOM).Fourth, yield was analysed with a mixed model with the categorical variables of HEC, 

location, as a proxy for cultural factors associated with a geographic region, and farm as proxy for 

management skills.  

 

The mixed model explained more than 80% of total variation in yield with 61% associated with 

HECs and 19% with farm. Location only had minimal effects. The results of this model can be used 

to determine the appropriate environmental conditions for obtaining high yields for crops where 

only commercial data or farmers’ production experiences are available, and also to identify those 

farms that have superior management practices for a given set of environmental conditions. 

 

5.1 INTRODUCTION  

 
In the case of tropical fruit crops, farmers’ production experiences could be used to interpret crop 

responses to variation in growing conditions caused both by inherent variation in growth 

environment and also by variation in farm management practices. As mentioned in the previous 

chapters, our premise is that if it were possible to describe the management and environmental 

conditions that characterise a production system, and if information of farmers’ production 

experiences occurring under varying conditions were available, it would be possible to develop 

data-driven models for the production system (Jiménez et al., 2009). The experience acquired with 

Andean blackberry in the preceding chapter, in addition to studies conducted for sugarcane and 

coffee, demonstrated that recording farmers’ production experiences occurring within the naturally 

variation in management and environment under which these tropical species are growing, crops 

response can be modelled using best fit models (Isaacs et al., 2007; Niederhauser et al., 2008; 

Jiménez et al., 2009). 

 

There is however, a major caveat to this approach. Due to the large number of variables that affect 

crop response, interactions and non-linearity of the responses, and the inevitable errors in data 

collection by farmers, a large number of datasets are required to be able to make sense of the 

data. With the large datasets required to draw conclusions, it is likely that novel analytical 

approaches will be necessary. Grimm (1999) suggested that modellers should experiment more 
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with their mathematical models. In this chapter, we experiment with various analytical modelling 

approaches and compare their efficacy in explaining yield for lulo.  

 

In the present chapter a range of approaches is used to interpret variation in information of 

farmers’ production experiences of lulo (Solanum quitoense Lam.), an Andean fruit grown in highly 

heterogeneous conditions by small producers with minimal access to information from traditional 

research programs. The efficacy of the different approaches is compared with examples from non-

parametric and parametric methods and combinations of the two approaches. 

 

ANNs were selected as the non-parametric approach, and multiple linear regression and mixed 

models as the parametric approaches. Furthermore, based on the recommendation of Schultz et 

al. (2000) the parametric approach was combined with ANNs methods in order to benefit from the 

advantages of both. Multiple linear regression and mixed models combined with Best Linear 

Unbiased Prediction (BLUP) are frequently used to understand relationships between crop yield 

and environmental variation (Khakural et al., 1999; Kravchenko and Bullock; 2000; Piepho, 1994; 

Yan et al., 2002; Piepho and Mohring, 2005). However, the results of these approaches are often 

not satisfactory due to their incapacity to take into account non-linear relationships between output 

and inputs (Gevrey et al., 2003; Miao et al., 2006) and do not handle outliers well, although some 

robust linear regressions have been developed to address this problem (Rousseeuw and Leroy, 

1987; Lanzante, 1996; Faraway, 2002). Multiple regressions are also poor at handling categorical 

data (O'Grady and Medoff, 1988). 

 

In the case of farmers’ production experiences, categorical variables such as agro-ecological zone 

and location are likely to be important. ANNs, as non-parametric approaches, and as was 

previously mentioned, have several attractive theoretical properties: They do not require strong 

assumptions on the form or structure of the data (Sargent, 2001; Paul and Munkvold, 2005; 

Nagendra and Khare, 2006); and they are capable of “learning” non-linear models that include both 

qualitative and quantitative information. ANNs have demonstrated their utility in agricultural 

modelling (Hashimoto, 1997; Schultz and Wieland, 1997; Paul and Munkvold, 2005; Miao et al., 

2006). However, and as it has also been mentioned in conclusions of chapter 3, among the 

disadvantages of artificial neural networks are: their “black-box” nature, they are computationally 

exhaustive, they can be over-trained and give false expectations of their predictive capacity 

(Schultz et al., 2000; Sargent, 2001; Paul and Munkvold, 2005; Ozesmi et al., 2006). 

 

Mixed models combine both random and fixed effects. When combined with BLUP, which provides 

linear estimates of fixed effects, the contribution of random effects to the output can be estimated. 

Robinson (1991), Yan et al. (2002) and Rabe-Hesketh and Skrondal (2008) demonstrated how this 
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method could be used to compare the performance of varieties grown under a range of conditions 

in commercial fields with not all varieties being grown at all sites. Experience with sugarcane, 

coffee (Isaacs et al., 2007; Cock et al., 2011) and shrimp production (Gitterle et al., 2009), 

suggests that one of the most effective means of analysing farmers’ production experiences 

information is first to establish clusters of events with similar environmental conditions, and then to 

determine the effects of variation in management practices within and between these 

environmental clusters and also to determine the effects of the environmental clusters per se. 

 

The effects of many continuous environmental variables on production and quality of agricultural 

products are likely to be non-linear. For example, there is likely to be an optimal and non-linear 

response to such variables as average temperature, soil water content, soil pH, air humidity and 

diurnal temperature range. Thus, it is likely that non-linear methods will be optimal for determining 

the effects of environmental variables on crop quality and productivity, and for identifying clusters 

of events with similar environmental conditions (Tuma, 2007). Many variables recorded for 

commercial crops production are likely to be categorical (e.g. weed control, land preparation 

practices). 

 

Furthermore, categorical variables such as the presence of a given farm may be used as a 

categorical proxy variable for farm management skills associated with that particular farm. Isaacs 

et al. (2007) used groups of farmers defined by social characteristics, as categorical proxy 

variables for management and associated the various groups with different levels of productivity. At 

the same time, other management practices may be described by continuous variables as is the 

case with such variables as fertilizer levels or number of irrigations. Mixed models with BLUP, 

which incorporate linear regression, were selected as more suitable for handling both categorical 

and continuous variables in the same model than pure regression models (Cock et al., 2011). 

 

We chose the example of lulo to evaluate different data-driven approaches to develop predictive 

models. We selected lulo as it is an under-searched tropical fruit tree cultivated in Colombia, Costa  

Rica, Ecuador, Honduras, Panama and Peru (National Research Council, 1989; Franco et al., 

2002; Osorio et al., 2003; Bioversity International, 2005; Flórez et al., 2008; Pulido et al., 2008; 

Acosta et al., 2009). Lulo is exclusively grown in tropical environments where it normally produces 

during the whole year, with high variability in yield in both space and time. 
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5.2 METHODOLOGY 

Farmers’ production experiences data were collected on farms, and environmental conditions of 

farmers’ plots were characterized using both, data collected on-farm and publicly-available climate 

databases as explained in chapter 2. Data was compiled in SSAFT databases for analysis. The 

resulting database, which is the result of merging information from different sources, was analysed 

in an iterative way with the aim of finding both the most apposite dataset and approach to model it.  

5.2.1 FARMERS’ PRODUCTION EXPERIENCES 

The calendars developed by Corporación BIOTEC in collaboration with lulo producers in the 

department of Nariño, Colombia, were used to keep on-farm records based on a calendar that also 

provided them with useful information on lulo production (BIOTEC, 2007). Twenty-one lulo 

producers (Figure 5.1) recorded information on these calendars over 2 years period (January 2006 

to December 2007). Records of individual farms provided a data series on lulo production for each 

farm with farmers’ estimates of the quantity (gr) of fruit harvested per plant per week (see chapter 2 

and Appendix A2). Data collected in the database included information on location, variety, yield, 

and harvest time for a total of 254 records In addition, each site was geo-referenced using a hand-

held GPS (Garmin®-Etrex).  

5.2.2 BIOPHYSICAL CHARACTERIZATION OF SITES 

Similar to the process followed for Andean blackberry in the previous chapter, the generation of 

climatic, landscape, and topographic information for each site was extracted from interpolated 

publicly-available databases as explained in chapter 2, through the use of automated algorithms 

that enable us to estimate environmental conditions of lulo production sites, as they were geo-

referenced. Thus, environmental information was obtained from WorldClim, TRMM, and SRTM 

databases. In the case of lulo, extension officers reported the presence during flowering and fruit 

setting of Picudo de la flor (Anthonomus spp.) in the department of Nariño. Expert opinion states 

that this insect has an important effect on lulo yield. Climate information was included for the period 

of yield formation (harvest month, first, and second month before harvest) (see chapter 2) which 

also encompassed the period when the Picudo de la flor attacks the flower buds. 

 

With regard to soil characteristics, the simple, easy to learn methodology called RASTA, presented 

in chapter 2, was distributed to lulo growers to characterise their soil conditions. According to the 

results obtained for Andean blackberry, we were aware that a number of management variables, 

that we were not able to measure, could have a major impact on the outputs of the models. In 

order to estimate the effect of these variables, we integrated location into the analysis in a similar 
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manner as with Andean blackberry as a proxy for the socio-economic conditions of a given group 

of farmers, and farm as a proxy for the management skills associated with a particular farm. 

5.2.3 VARIABLES 

In the present study, four locations with 21 different lulo producing sites (Figure 5.1) were 

characterized. In this case variables were chosen on the same pragmatic basis followed for 

Andean blackberry, taking into account factors easily recorded by farmers as well as expert opinion 

on which factors are likely to affect yield. Similar to Andean blackberry, the dataset of lulo has 

more data for low yields than for high yields (Figure 5.2). 

 

 

 

Figure 5.1. Map of the study area; the dots indicate the sites of lulo production where data was collected 
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Figure 5.2. Histogram displaying lulo yield data distribution  

 
 

The information was compiled in the database for lulo with 254 records, 19 independent variables 

providing information for each site and the dependent variable, e.g. productivity of lulo (Table 5.1). 

The independent and dependent variables of the multiple linear regression approaches correspond 

to the supervised ANNs inputs and output, respectively. This information included continuous 

variables depicting biophysical information based on landscape, topography, edaphic conditions, 

climate, and categorical variables depicting variety and location (Table 5.1). Scatter plots 

considering continuous variables and yield were calculated in order to facilitate visualization 

(Figures 5.3a to 5.3j). Each yield observation was associated with climate variables taking into 

account date of harvest. 
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Table 5.1. Variables recorded in the lulo database 

 
Input Variable Units Abbreviation Ranges 

1 Location   - 
1ª 

a
Nariño, cartago, san isidro -

 
Na_ca_san * - 

1b 
a
Nariño, la union, buenos aires 

- 
Na_un_ba * - 

1c 
a
Nariño, la union, la jacoba 

- 
Na_un_jac * - 

1d 
a
Nariño, la union, chical alto 

- 
Na_un_chical *   

 Variety, landscape, topography, edaphic conditions     
2 

a
Thorn or no thorn -

 
Nar_Thorn_N  - 

3 
b
Altitude MASL

 
Srtm * 1800-2290 

4 
b
Slope degrees

 
Slope * 5-24 

5 
a
Internal drainage -

 
IntDrain 2-3 

6 
a
External drainage -

 
ExtDrain * 2-3 

7 
a
Effective soil depth cm

 
EffDepth * 21-70 

 Climate    
8 

a
Precipitable water of the harvest month mm Trmm_0 * 0.2-12

 c
 

9 
a
Precipitable water of the first month before harvest mm Trmm_1 * 0.2-14

 c
 

10 
a
Precipitable water of the second month before harvest mm Trmm_2 * 0.3-13

 c
 

11 
a
Average temperature of the harvest month °C TempAvg_0 * 14-19 

12 
a
Average temperature of the first month before harvest °C TempAvg_1 12-20 

13 
a
Average temperature of the second month before harvest °C TempAvg_2 13-18 

14 
a
Accumulated precipitation of the harvest month mm PrecAcc_0 30-320 

15 
a
Accumulated precipitation of the first month before harvest mm PrecAcc_1 3-310 

16 
a
Accumulated precipitation of the second month before harvest °C PrecAcc_2 3-300 

17 
a
Temperature range of the harvest month °C TempRang_0 * 8-11 

18 
a
Temperature range of the first month before harvest °C TempRang_1 * 7-13 

19 
a
Temperature range of the second month before harvest °C TempRang_2 * 8-13 

Output 
a
lulo yield  g/plant/week 1.25-220 

a 
Categorical variables. Units are classes of each variable 

b 
Continuous variables 

c 
Values divided by 10 according to the data provided by the satellite 

* Final set of inputs/dependent variables used in the development of lulo yield regression models 
 
 

 
    (a)       (b) 
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    (c)       (d)  

 
   (e)        (f) 

 
 
   (g)       (h) 

 
   (i)        (j) 
 

Figure 5.3. Scatter plots of the final set of variables used to model lulo yield. Scatters plots of yield vs: (a) srtm; (b) 
slope; (c) effective soil depth; (d) precipitable water of the harvest month; (e)

 
precipitable water of the first month before 

harvest; (f) precipitable water of the second month before harvest; (g) average temperature of the harvest month; (h) 
temperature range of the harvest month; (i) temperature range of the first month before harvest; and (j) temperature 
range of the second month before harvest  
 
  

5.2.4 MODELS  

Figure 5.2 shows that there is a preponderance of low productivity data in the dataset with only a 

few cases of high yields. Statistical analyses often take the drivers of these high productivities as 

outliers, and yet it is precisely factors associated with high yield that are of most interest. 
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In the study conducted for Andean blackberry, two geographical areas were identified as highly 

productive and it was suggested that farmers in these localities were managing their crops 

particularly effectively. Nonetheless, there was not sufficient information to determine which 

management factors led to these high yields. 

 

In the case of lulo, we wanted to know further details despite the scarcity of management 

information. Thus, taking into account (a) that outliers need to be included when modelling under-

researched crops; (b) there is a need to know more in detail insights about farmers` knowledge on-

farm, and (c) the experience with sugarcane, and coffee determining the effects of variation of 

management practices, within and between events with similar environmental conditions; we opted 

for three data-driven approaches. Two regressions were implemented: non-linear and linear 

regressions and an iterative approach which used linear robust regression, mixed models and a 

non-supervised ANN combined with expert guidance. In this work, ANNs models were developed 

both to build a non-linear regression through a multilayer perceptron and also to establish clusters 

of events with Homogeneous Environmental Conditions (HECs) by means of a SOM. 

 

Parametric techniques were employed in order to construct a robust linear regression and to 

determine the effects of location, management and groups of homogeneous environmental 

conditions with mixed models in an iterative approach guided by expert opinion. 

5.2.4.1 ROBUST LINEAR REGRESSION  

STATA statistical package was used to implement multiple regressions. We selected the robust 

linear regression approach, which exploits as much information as possible without removing 

outliers, exceptional records or events. This technique is the most adequate when there are data 

points that have very high leverage (a measure of how far an independent variable deviates from 

its mean), and when there are outliers. Robust regression is essentially a compromise between 

dropping case(s) that are moderate outliers (observations with large residuals) and seriously 

violating the assumptions of Ordinary Least Squares regression (OLS). 

 

The robust regression, a form of OLS, was applied to the 254 observations, with production as the 

dependent variable. The robust regression was set to determine Cook's distance values, 

whereupon any observation with a Cook's D value greater than 1 was dropped in an iterative 

process. Using the matrix notation, the Cook’s distance is defined in equation 5.1: 
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                          { ̂ −  ̂  𝑖 }𝑋 𝑋  { ̂ −  ̂  𝑖 } 𝑝                             (5.1). 

 

Where:  ̂= is the usual least square estimator vector of p by 1 dimension; { ̂ −  ̂  𝑖 }   is the 

difference between the two p by 1 vectors, also p by 1;  ̂  𝑖 = is the least squares estimator after 

the i th data point has been omitted from the data, also p by 1 dimensions; X= the matrix containing 

the values of the independent variables, X t= the transpose of X, p= the number of independent 

variables plus one; and s2= is the estimate of variance provided by residual mean square error 

from using the full dataset. A large Di corresponds to an influential observation; that is, an 

observation that has more than the average influence on the prediction of the parameters 

(StataCorp., 2005; Castelló-Climent, 2008). 

 

5.2.4.2 MULTILAYER PERCEPTRON (MLP) REGRESSION  

For non-linear regression, a supervised ANN capable of handling a high degree of heterogeneity in 

the data was used. ANNs, unlike OLS regressions, are non-parametric and make no assumptions 

about the structure of the variance in the original datasets (Nagendra and Khare, 2006). 

 

Similar to the study conducted for Andean blackberry, a MLP was implemented in FENNIX 

software to make a non-linear regression. The Back-propagation algorithm was used to train the 

neural network and minimize the difference between the estimated output of the model and the real 

output through MSE. Model performance was tested in a similar manner to Andean blackberry 

whereas the number of neurons in the hidden layer was made comparing neural networks with 1, 

to 10 hidden units using the bootstrap validation scheme (Efron, 1983) and testing each network by 

performing split-sample validations 100 times, comparing the different values of averaged MSEs, 

and then determining the network having the best performance. In the case of lulo, the topology 

with the lowest MSE (0.041) over the validation subset had four units in the hidden layer and was 

chosen as the most suitable (Figure 5.4).  

 

One hundred networks with the selected topology were built and tested in order to improve the 

model generalization capabilities (Dietterich, 2000; Brown, 2005).  
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Figure 5.4. MSE of artificial neural networks with different number of neurons in hidden layers 

5.2.4.3 ITERATIVE MODEL APPROACH 

The iterative approach was based on robust linear regressions, non-linear ANNs regression, and a 

combination of a non-supervised ANNs known as SOM with mixed models with best linear 

unbiased prediction. The iterative approach first identified the most important variables associated 

with yield; second, it used this information to identify homogeneous environmental conditions, and 

third, analysed differences in productivity related to variation between HECs and due to 

management variation within HECs. 

5.2.4.4 SELF-ORGANIZING MAPS (SOM) 

SOMs were used to map high-dimension datasets in a lattice of two dimensions. Observations with 

similar characteristics, in the high-dimensional space appear grouped together in the two 

dimensional map. In the same manner as with Andean blackberry, software package MATLAB 7.0 

and its function package SOM toolbox were used to train the Kohonen map and to group 

observations into a given number of K through the K-means algorithm, and Davies-Bouldin index. 

MATLAB’s scripts for training a Kohonen map and clustering prototypes are shown in appendix A3. 

 

SOMs were used to define Homogeneous Environmental Conditions (HEC) based on first, the 

original set of selected environmental variables by training a Kohonen map with a total of 255 yield 

records, creating an input matrix trained with a SOM of 96 neurons (12 x 8); and second on those 

variables identified as important by the robust regressions and ANN non-linear regressions by 

generating an input matrix trained with 78 neurons (13 x 6). HECs take into account both temporal 

and spatial variability; thus a particular farm may fall into different HECs according to changes in 

weather conditions.  
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5.2.4.5 MIXED MODELS  

Mixed models were selected as they include both, random and fixed effects in the analysis. The 

STATA statistical package was used to develop a linear mixed model called Best Linear Unbiased 

Prediction (BLUP) for the prediction of random effects (the term prediction is normally used for the 

estimation of random effects, whereas estimation is used for fixed effects (Robinson, 1991; Rabe-

Hesketh and Skrondal, 2008). Furthermore, whereas regression techniques are not well-suited to 

handle datasets with many categorical variables as a result of the exponential increase in volume 

linked to adding extra dimensions to a mathematical space (Bellman, 1961; O'Grady and Medoff, 

1988), mixed models are well-suited to perform this task. BLUP are estimates of the realized 

values of an output as linear functions of the random variables; they are unbiased in the sense that 

the average value of the estimate is equal to the average value of the quantity being estimated; 

they are best in the sense that they have minimum MSE within the class of linear unbiased 

estimators; and predictors to distinguish them from estimators of fixed effects. The mixed models 

assumed linear effects of random variables with no interactions to estimate how random effects 

contribute to raising or lowering of the average of the output. Mixed models were selected as 

particularly suitable for evaluating datasets that included the categorical variables HEC, locations 

and farms. 

5.2.4.6 REGRESSION MODEL TESTING 

In order to provide a mechanism for testing model performance and to compare different models or 

network topologies, both training and validation datasets were created in FENNIX by random 

sampling without replacement from the whole dataset for both robust regressions and MLP. In this 

way, each robust regression or MLP model regression was performed using 80% of the whole 

dataset, the model performance was assessed on the remaining 20%. The method is the same as 

the one we used for Andean blackberry and mentioned in chapter 3. This time, in order to compare 

the MLP model and the robust regression model, the split-sample procedure was run 100 times. 

The 100 yield estimates were then used to estimate the coefficient of determination (R2) and the 

confidence limits of both the MLP and robust regression models. 

5.3 RESULTS AND DISCUSSION  

5.3.1 REGRESSIONS  

5.3.1.1 SELECTION OF VARIABLES 

In the iterative analysis process, input datasets were first pre-processed in order to eliminate 

variables that were highly correlated. Removal of essentially duplicated variables eliminates 
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redundant inputs, reduces noise, and avoids the effect of several variables having the same 

function in the model (Faraway, 2002; Paul and Munkvold, 2005; Satizábal et al., 2007). 

 

A Pearson correlation calculated in XLSTAT for MS Excel, identified several variables as highly 

correlated: a Pearson coefficient greater than 0.8 or less than -0.8 was taken as threshold, and one 

of the pair of variables was eliminated from the subsequent analysis when the coefficient was 

beyond the threshold values (Table 5.2). 

 

Table 5.2. Pairs of variables strongly correlated 
 

Variable retained  
(abbreviation)

 a 
 

Variable removed 
 (abbreviation)

 a 
 

Correlation 

Na_ca_san Nar_Thorn_N
 

-1 
ExtDrain

 
IntDraina

 
-1 

TempAvg_0
 

TempAvg_1
 

0.94 
TempAvg_0

 
TempAvg_2

 
0.83 

TempRang_0 PrecAcc_0 -0.83 
TempRang_0

 
PrecAcc_1

 
-0.88 

TempRang_1
 

PrecAcc_2
 

-0.89 
TempRang_2

 
PrecAcc_2

 
-0.82 

a 
List of abbreviations and their meanings are shown in table 5.1 

 

Similar to the procedure followed with Andean blackberry, the decision of which variable to retain 

was made on the basis of expert knowledge. In the case of Nariño-Cartago-San Isidro, thorn or 

thornless (variety), the Nariño-Cartago-San Isidro categories for location were retained as the use 

of a thornless variety was considered to be just one of the several management factors that might 

be associated with that particular location (see chapter 2). External drainage was chosen over 

internal drainage as a single variable contains the whole information. 

 

Variable average temperatures for the harvest month, first month before harvest and second 

month before harvest were strongly correlated: variable average temperature of the harvest month 

was retained. Likewise, accumulated precipitation of the harvest month, the first and second 

months before harvest were strongly correlated with temperature range throughout the different 

months; the variable temperature range was maintained instead of accumulated precipitation as 

our experts (experienced extension officers) on lulo suggested that it is most likely that 

temperature range has an effect on lulo yield, rather than precipitation.  

 

After the elimination process, twelve of the initial 19 variables were selected as drivers for the MLP 

non-linear regression and robust linear regressions. They were: Nariño- Cartago- San Isidro, 

Nariño- La Union- Buenos Aires, Nariño- La Union- La Jacoba, Nariño- La Union- Chical Alto, 

altitude, slope, external drainage, effective soil depth, precipitable water of the harvest month, 



106 
 

precipitable water of the first month before harvest, precipitable water of the second month before 

harvest, average temperature of the harvest month, temperature range of the harvest month, 

temperature range of the first month before harvest, and temperature range of the second month 

before harvest (Table 5.1). 

5.3.1.2 PERFORMANCE ANALYSIS AND MODEL INTERPRETATION 

Mean R2 from the 100 validations subsets was 0.69 for MLP and 0.65 for the robust regression 

model (Table 5.3). Distribution of R2 provided by each approach was similar (Figure 5.5) with a 

95% confidence interval 0.67 - 0.70 for MLP regression, and 0.63 - 0.66 for the robust regression. 

Both models explained more than 60% of yield variability at P= 0.05. The R2 of MLP was 

significantly greater than that of the robust linear regression (P<0.05 Holm-Sidak comparison at an 

alpha level of 5 %) and thus MLP explained significantly more variation (69%) than the robust 

regression (65%). 

 

      Table 5.3. R
2
 of predicted versus real lulo yield provided by both regressions, 

    using 100 validation datasets 

 
Regression R

2 
(mean) Confidence interval 

(95%) 

Robust (linear) 0.65 0.63 - 0.66 
MLP (non-linear) 0.69 0.67 - 0.70 

 

 
 

Figure 5.5. Distribution of R
2
 obtained with each model 

 
One of the steps followed to develop the robust regression, included the computation of a forward 

stepwise addition procedure (Tomassone et al., 1983). This method was used to add step-by-step 

one predictor and assess the change in MSE of the model. The change in MSE associated with the 
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addition of each variable illustrates the relative importance of each predictor variable (Gevrey et al., 

2003). 

 

This stepwise procedure indicated that the variable slope explained 84 % of total yield variation, 

average temperature of the harvest month 11 % and effective soil depth 4% of total variation 

(Table 5.4). 

 

In the case of MLP, and in order to identify the variables which contribute most to yield, we used 

the relevance metric described in chapter 3. This method assesses input relevance by calculating 

the partial derivative of the output of the neural network with respect to each of the inputs. Thus, 

the greater the partial derivate, the more relevant is the variable. 

 

The sensitivity metric in the MLPs identified effective soil depth, average temperature of the 

harvest month, slope and locality Nariño-La Union-Chical Alto as the most important variables 

associated with yield variation (Figure 5.6). The four variables selected by the sensitivity metric 

included the three most important variables as determined by the robust linear regression. With the 

exception of slope, these are the same variables that were identified as most relevant for modelling 

Andean blackberry yield.  

 

Table 5.4. Variables explaining lulo yield according to a forward stepwise procedure 

 

Variable Added R
2 

R
2
 due to variables % of total 

Slope 0.47 0.47 84.3 
TempAvg_0 0.53 0.06 11.0 

EffDepth 0.55 0.02 3.7 
Total  0.55 100.0 

 

 

Figure 5.6. Sensitivity distribution of the MLP model with respect to inputs 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

%
 S

e
n

s
it

iv
it

y
  



108 
 

5.3.1.3 MIXED MODELS AND SELF-ORGANIZING MAPS 

Table 5.5. Variables integrated into the mixed model 

 
Variable Abbreviation 

Biophysical data used in regressions 
a b

 see Table 5.1 

Site-Farm
 a
 F1, F2, F3, F4, F5, F6, F7, F8, F9, F10… F21 

Homogeneous environmental conditions
 a
 HEC1, HEC2, HEC3…HECn 

Location
 a
 Na_ca_san, Na_un_ba, Na_un_jac, Na_un_chical 

 a 
Categorical variables 

 b 
Continuous variables 

 

In various crops, attempts have been made to define the major environments where crops are 

grown and homogeneous or mega-environments in which similar varieties or crops could be grown 

(see for example Cock, 1985; Braun et al., 1996; Yan et al., 2002.). These relatively homogeneous 

environmental conditions or mega-environments have been determined both by expert opinion 

(see for example Cock (1985) for cassava, Braun et al. (1996) for wheat) and by analysis of the 

differential response or by ranking of varieties in multi-locational variety trials (Yan et al., 2002.). 

Isaacs et al. (2007) defined various Agro-ecological Zones (AEZ) for sugarcane production so as to 

analyse the effects of management practices on cane and sugar yield within and across AEZs 

using farmers’ production experiences. 

 

In the case of sugarcane, AEZs were based on expert opinion and an intimate knowledge of the 

crop and its response to variation in climate and soil conditions (see chapter 2). The idea behind 

the HECs, AEZs and mega-environments is that crop response in any one HEC, AEZ or mega-

environment is uniform or homogeneous. With lulo, we were not able to define AEZs in the same 

manner as with sugarcane, cassava or wheat as there was not sufficient expert knowledge of the 

crops response to variation in soil and climatic conditions. Hence, we explored an iterative 

approach to defining HECs for lulo. The first step to identify production conditions that were 

homogeneous in terms of environment and weather in the period before harvest, was to select the 

twelve variables identified by the regression models as those most closely associated with 

variation in productivity. The twelve variables were then used to train a Kohonen map and identify 

clusters of HECs (Figure 5.7a). The Davies-Bouldin index indicated that there were six major HECs 

(Figure 5.7). 
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Figure 5.7. (a) U-matrix displaying the distance among prototypes. The scale bar (right) indicates the values of 
distance. The upper side exhibits high distances, whilst the lower displays low distances; (b) Kohonen map 
displaying the 6 clusters obtained by the K-means algorithm and the Davies–Bouldin index 

 

These six HECs were then incorporated into a mixed model together with the variables farm and 

location (Table 5.5). Farm and location were both incorporated as proxy variables for crop 

management on the assumption that HECs covered the variation due to environmental variation 

and that the remaining variation must be due to management. Furthermore, we hypothesized that 

(a) management in any one geographical location might be similar due to the sharing of ideas 

between farmers; and (b) even in the same location there would undoubtedly be managerial 

differences between farms. In previous studies, variable “location” or “site” were incorporated into 

regression models to predict soybean and winter wheat yield (Yan and Rajcan, 2003; Green et al., 

2007). 

 

The mixed model with six HECs, location and farm explained more than 79 % of variation (Table 

5.6). However, the single variable farm explained 70% of variation, location 8% and the HECs a 

negligible amount (less than 1%). 

 

Based on the MLP and robust regressions, in which environmental variables explained more than 

60% of variation with 95% confidence limits, we had expected HECs to explain a much larger 

proportion of variation. This suggests that the variable, “farm”, was not only acting as a proxy for 

management effects but also for environmental conditions, and that the clustering process had not 

identified truly homogeneous ecological conditions for crop growth and development. The most 

likely explanation for the HECs not being truly homogeneous in respect to crop response is that the 

variables used to develop the clusters were inappropriate with variation encountered in several 

variables being irrelevant in terms of crop development. 
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From both, MLP and robust regression analysis, soil depth, average temperature of the harvest 

month, and slope were identified as the most important environmental variables associated with 

variation in yield. Expert opinion concurred with the premise that soil depth and temperature were 

indeed likely to be important factors associated with production. However, slope came as 

somewhat of a surprise to the experts, although it is well known that most lulo is indeed grown on 

sloping ground with lulo planted on flat lands being a rarity. 

 

We therefore conducted a new cluster analysis with the three most important environmental factors 

identified by the regressions using the same Kohonen map procedure as used previously. As a 

result three HECs were identified (Figure 5.8). 

 

 

(a)                               (b) 

Figure 5.8. (a) U-matrix displaying the distance among prototypes. The scale bar (right) indicates the values of 
distance. The upper side exhibits high distances, whilst the lower displays low distances; (b) Kohonen map 
displaying the 3 clusters obtained after using the K-means algorithm and the Davies–Bouldin index 

 
A mixed model with the categorical variables of three HECs, location and farmer explained more 

than 80% of variation in lulo yield (Table 5.6). Variable HEC explained 61% of total variation 

indicating the extreme importance of environmental conditions in yield determination. Location 

explained less than 3% of variation in yield suggesting that differences in local practices between 

locations are of little importance in determining yield. This variable was not as relevant as we 

expected, considering the results suggested by the study with Andean blackberry. On the other 

hand, 19% of variation in yield, ceteris paribus, was attributed to farm suggesting that the 

management skills of individual farmers influenced yield. Furthermore, the high level of explanation 

of total variance by the HECs suggests that the method used to define them is effective. 
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Table 5.6. Variance components of the mixed model estimations 

 

Parameters Estimate  
(g plant

-1
 wk

-1
) 

Standard 
Error 

% 
of total variance 

Model including information of 6 HECs, farms, and 12 biophysical variables 

HEC 0.01 0.65 0.5% 

Location 0.18 0.62 8.4% 

Site-Farm 1.50 0.34 70.4% 

Error 0. 44 0.05 20.7% 

Total 2.13  100.0% 

Model including categorical variables of 3 HECs, location and farm 

HEC 1.85 2.01 61.2% 

Location 0.07 0.20 2.5% 

Site-Farm 0.57 0.21 19.0% 

Error 0.52 0.04 17.3% 

Total 3.03  100.0% 

 

In the initial selection of variables, the varietal trait thorn or no thorn was eliminated as it was highly 

correlated with location and effectively confounded with location. Nevertheless, for farmers the 

effect of this trait on yield is extremely important: thornless varieties (Solanum quitoense var. 

quitoense) are much easier to harvest than thorny types (Solanum quitoense var. septentrionale). 

As location was only minimally associated with variation in yield once the effects of HEC and farm 

were taken into account, we decided to run the mixed model without location, including the thorn 

trait as a fixed effect. 

 

The variation explained by both HEC and farm (79%) was similar to that of the previous model 

(Table 5.8). The effect of the variable thorn or no thorn was not significant at the standard 5% level 

(p = 0.168) (Table 5.7). However, we suggest that caution is needed in interpreting this result as 

indicating that there is no difference between the yield of thorned and thornless varieties.  

 
 
Table 5.7. Variance components of the mixed model estimations, including variety 
information 

 

Fixed effect 
lulo yield Coefficient 

(g plant
-1

 wk
-1

) 
Standard error Z P > Z 

Nar_Thorn_N
a
 -27.69 20.1 -1.38 0.168 

n
 

   a 
Variable defined in Table 5.1 

   n 
Not statistically significant difference 
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Table 5.8. Variance components of the mixed model estimations, including variety 
 information (Nar_thorn_N) 

 
Random effects 

Parameters Estimate 
(g plant

-1
 wk

-1
) 

Standard 
error 

% variation 
 of total 

HEC 1.41 1.55 55.4% 

Site-Farm 0.61 0.21 23.9% 

Error 0.53 0.05 20.8% 

Total 2.56  100.0% 

 

Inspection of Figures 5.9a and 5.9b gave clues as to how HECs, and farms affect productivity of 

lulo. HEC 3 shows a significant effect on lulo yield and consistently yielded more than HEC 2 and 

HEC 1 (Table 5.10). HEC 3 yielded 41 g plant-1 wk-1 more fruit than average, whilst HEC 2 yielded 

18 g plant-1 wk-1 less than average and HEC 1 yielded 24 g plant-1 wk-1 less than the average. 

Comparison of the characteristics of HEC 3 with the other HECs provides an indication of the 

combination of environmental conditions suitable for high productivity of lulo (Table 5.9). 

 

Table 5.9. Environmental conditions for each HEC 

 

Variable ranges HEC 
Slope 
(degrees) 

EffDepth (cm) TempAvg_0 
(°C) 

 

5-14 21-40 15 -16.5 1 
8-15 32-69  15 -18.9 2 
13-24 40-67 15.8 -19 3 

 

Farms 5, 6, 16, 19, and 20 in HEC 2 and farms 7 and 9 in HECs had yields significantly different 

from the mean. A particular farm may fall into different HECs according to changes in 

environmental conditions such as: temperature or precipitation. Thus, farms 19 and 20 had a 

significant effect on lulo production when they fell into HEC 2, but not when they fell into HEC 3. 

Nevertheless, farms 19 and 20 produced 15 and 38 g plant-1 wk-1 more than average in HEC2 and 

15 and 17 g plant-1 wk-1 more than average in HEC3, suggesting that these farms manage their 

crops effectively whereby those different environmental conditions do not greatly affect good 

management practices required to obtain higher than average yield. Farm 7 and 9 are in HEC 3 

which in general presents highest yields. However, farm 7 produced 68 g plant-1 wk-1 less than 

average, whilst farm 9 produced 51 g plant-1 wk-1 more than average. Similarly, farm 16 (even 

though it was in a relatively low productivity environment, HEC 2) produced significantly more (20 g 

plant-1 wk-1) than average. We suggest that farm 7 probably has inappropriate management 

practices for obtaining high yields whilst farms 9 and 16 are effectively managed. Furthermore, by 

identifying well-managed farms and poorly-managed under similar environmental conditions and 
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visiting them it should be possible to identify those management practices that are associated with 

high levels of productivity, and conversely those practices which are inappropriate. We suggest 

that this information is extremely valuable as visits to superior farms could provide guidelines for 

improving yields on other farms with similar HECs.  

 

Within HECs, there is a large range in yield variation associated with the farm, and little variation 

associated with location (Figure 5.7b).  

 

On the other hand, we suggest that farms as a variable, within homogeneous ecological 

conditions, provide a proxy for farmer’s management skills. Although it is not possible to precisely 

identify the practices or skills used by farmers, it is possible to identify “good” farmers and quantify 

the yield advantage that they obtain over others. 

 

 

 

 

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00

1 2 3

L
u

lo
 y

ie
ld

 (
g

/p
la

n
t/

w
e

e
k

) 
  

Effects of clusters of environmental conditions 
(a) 



114 
 

 

 

Figure 5.9. Clustered columns of the effects on lulo yield estimations: (a) effect of HEC, (b) effects of farms across 

HECs 

 

Table 5.10. t test for the Best Linear Unbiased Predictions (BLUPs) 

 
Effect Estimate 

(g plant
-1

 wk
-1

) 
t Probability 

> |t| 

HEC Farm    

1 - -24 -0.97 0.33 
n
 

2 - -18 -0.77 0.44
 n
 

3 - 41 1.76 0.08 
s
 

1 1 -1 -0.08 0.93
 n
 

1 2 -2 -0.13 0.89
 n
 

1 3 0 0.03 0.98
 n
 

1 4 3 0.19 0.85
 n
 

1 5 -14 -0.86 0.39
 n
 

1 8 -6 -0.32 0.75
 n
 

1 17 10 0.59 0.55
 n
 

2 5 -24 -2.55 0.01 
s
 

2 6 -17 -1.78 0.08 
s
 

2 8 -19 -1.44 0.15
 n
 

2 10 -7 -0.7 0.48
 n
 

2 11 -2 -0.19 0.85
 n
 

2 12 -7 -0.79 0.43
 n
 

2 13 -7 -0.8 0.42 
n
 

2 15 0 -0.04 0.97
 n
 

2 16 20 1.99 0.05 
s
 

2 17 2 0.24 0.81
 n
 

2 19 15 1.71 0.09 
s
 

2 20 38 4.26 <.0001 
s
 

3 7 -68 -5.12 <.0001 
s
 

3 9 51 4.56 <.0001 
s
 

3 14 6 0.48 0.63
 n
 

3 18 -11 -0.97 0.33
 n
 

3 19 15 0.84 0.40
 n
 

3 20 17 0.97 0.33
 n
 

3 21 8 0.76 0.45
 n
 

           n 
Not statistically significant difference

  

           s
 statistically significant difference 
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5.4 CONCLUSIONS  

 
Both parametric and ANNs models that used farmers’ production experiences linked to 

characterization of the growing conditions explained more than 60% of variability in lulo yield. 

Multilayer perceptron neural network explained more variation (69%) than robust regression (65%).  

 

Robust regression applied with a stepwise procedure identified slope, average temperature and 

soil depth as the most important environmental variables associated with variation in yield. 

Sensitivity analysis of the multilayer perceptron identified the same three factors as the stepwise 

robust regression plus one locality based variable, suggesting that both methods are appropriate to 

identify the most important factors associated with yield variation, but that MLP was capable of 

discovering factors that were not identified to be important by robust regression.  

 

Identification of HECs by taking all measured variables and using SOMs, did not provide a useful 

clustering of HECs. However, by first identifying those factors associated with yield variation either 

by robust regression or by multilayer perceptron regressions, HECs associated with yield variation 

were successfully defined. Once HECs were defined, it was possible to use a mixed model to 

analyse: 1) the effects of the environment using HECs as a categorical variable; 2) socio-economic 

conditions associated with geographic position of individual production units using location as a 

categorical variable; and 3) farm management skills using farm as a categorical variable. The 

mixed model has the advantage over regression models of handling multiple categorical variables 

of the same class, such as farms. 

 

The mixed model explained more than 80% of total variation in lulo yield, with HEC and farm 

variables explaining most of the variation. This suggests in the case of lulo that better than average 

yield is primarily associated with appropriate environmental conditions (indicated by HEC) and 

good farm management practices (indicated by farm). 

 

Although it was not possible to identify precisely which management practices were effective, 

farms with “good” management could readily be identified. Furthermore, observation of the range 

of conditions in HEC 3, associated with higher than average yields defined that the most suitable 

environmental conditions for producing lulo are the combination of: an effective soil depth between 

40 and 67 cm, slope between 13 and 24 degrees and an average temperature between 15.8 and 

19 °C. It is also noteworthy that although in this dataset not all measured variables were 
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associated with variation in lulo yield, those variables may affect yield if they are outside the range 

reported here. 

 

We note that an automated approach to analyse the data using a single methodology was much 

less powerful than an iterative guided approach using various methodologies. Both multiple linear 

regression and ANNs models were useful tools for analysing and interpreting commercial 

production data once highly correlated independent variables had been eliminated. 

 

Regression models were particularly effective at identifying those independent variables 

associated with variation in the dependent variable, yield and then for defining homogeneous 

environmental conditions (HECs) based on the previously identified independent variables. Mixed 

models were effective for quantifying the effects of location (local culture) and farm (farm 

management skills) once HECs had been determined. The mixed model has the advantage of 

effectively handling multiple categorical variables. Thus we suggest that when analysing farmers’ 

production experiences, in order to interpret variation in yield, highly correlated independent 

variables should first be eliminated, and then either linear or non-linear regression models should 

be used to identify those independent variables associated with variation in the dependent 

variable. Self-organizing maps can then be used to determine HECs based on the variables 

associated with yield. Mixed models can then be used to analyse variation in yield attributable to 

both environmental conditions (HECs) and social and management conditions. 

 

In the particular case of lulo, proxies were used for social and management conditions. The 

analysis and interpretation of data is not trivial: expert guidance is required in the process of 

analysis. Nevertheless, various essential principles have been established that can be used as a 

guide for adequate analysis and interpretation of farmers’ production experiences, especially for 

under-researched crops 
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6 GENERAL DISCUSSION AND CONCLUSIONS 

6.1 GENERAL DISCUSSION 

 
Experiences of farmers achieved under specific socio-economic and environmental circumstances, 

were analysed in this thesis. Through modelling tools developed by first using a database of 

sugarcane, it was possible to (a) identify the most relevant variables associated with productivity of 

Andean blackberry, and lulo, and (b) determine the effects on lulo yield, of location and variation 

within and between environmental clusters. 

 

According to these results, optimal conditions that can led to high yields of Andean blackberry are: 

an average temperature between 16 and 18 °C, minimal effective soil depth of about 65 cm, and 

low rainfall during the first month before harvest in locations with poor external drainage, or with 

moderate to low rainfall in better-drained areas. In the case of lulo, the best conditions were the 

combination of: an effective soil depth between 40 and 67 cm, slope between 13 and 24 degrees 

and an average temperature between 15.8 and 19°C. The models explained almost 90% of yield 

variation of Andean blackberry and more than 80 % in the case of lulo, through an iterative 

approach that considered the effect of location and environmental clusters.  

 

Cock (2007) stated that “The concept of observing crop response to variations in the environment 

and management is as old as agriculture itself”. That is essentially the approach of operational 

research (Operational Research Society, 2006), and this thesis supports that view. Hence, the 

observations made by farmers on their production experiences have been analysed to provide 

growers with useful information to optimize their production systems. 

 

As far as we know, this is the first time that this methodology has been implemented for under-

researched crops in general and in Colombia in particular, although it has been applied in other 

countries and to well-researched crops (Evans and Fischer, 1999; Schulz et al., 2001; Yan et al., 

2002; Edwin and Masters, 2005; Lawes and Lawn, 2005; Welch et al., 2010; Erazo, 2011, Lacy, 

2011).  

 

The strategy of farmers collecting information on their own fields to be applied to their own 

production systems seems to be readily accepted by them compared to tryouts made under 

controlled conditions. The methodology used here supports the conclusions of others who have 

researched participatory research (Conroy et al., 1999; Rosenheim et al., 2011; Lacy, 2011). 

Nonetheless, the organization of the supply chain of each crop determines how data can be 
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collected and managed. Andean blackberry and lulo do not have strong growers’ associations, so 

that, the collection of information required a different approach. 

 

Cropping events in Andean blackberry and lulo were analysed based on the experience acquired 

in modelling events on sugarcane (Carbonell et al., 2001; Torres et al., 2004; Isaacs et al., 2007; 

Cock et al., 2011; Erazo, 2011). The studies conducted on sugarcane showed that it was feasible 

to estimate the environmental effects on crop performance by creating clusters with similar 

environmental conditions. In the case of sugarcane, data was available to determine these clusters 

and to establish both the effect and functions of the factors involved in crop performance. For 

Andean blackberry and lulo there was neither sufficient knowledge to indicate the likely non-linear 

response of any of the factors involved in production, nor expert criteria to define environmental 

clusters. Therefore, analytical approaches that were shown before allow to handle these conditions 

were used.  

 

The most relevant factors linked to productivity were identified and then the effects within and 

between environmental clusters were estimated. The study conducted on Andean blackberry 

identified geographic areas with highest yields, and suggested that growers were managing their 

crops effectively in these geographical areas. In the case of lulo, the study illustrated the yield gaps 

between farms in similar environmental conditions.  

 

Although there was insufficient information to determine precisely which management and social 

factors led to high yields, farmers who properly manage their fields were identified. This offers the 

chance for these farmers to spread their knowledge to other sites or farms with similar 

environmental conditions, so that they too can improve yields. In this manner, sharing production 

experiences between successful and less successful growers seems to be a powerful tool to 

increase productivity for under-researched crops in Colombia. 

 

Tropical countries like Colombia are characterized by a lack of research on tropical fruit species. 

Information from weather stations does not represent the production areas well. There is no 

reliable soil data for the production sites, and the environment is extremely heterogeneous. Both 

the manner in which the data was collected and the analytical tools presented in this thesis seem 

to be promising tools to develop a SSCP program. 

 

Technological packages for under-researched crops in Colombia have been developed by a 

handful of experienced agronomists who have documented these crops’ performances under 

particular conditions. Often these packages are distributed as the official technological package for 

the crop, but given the extremely heterogeneous environment in which these crops occurs, 
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extrapolating them to other regions is hazardous. Typically, the optimal conditions for a particular 

crop defined in these packages are too general. For example, the ranges of temperature and 

precipitation are very wide, and often the specified soil texture and pH are those that most crops 

would tolerate (Franco et al., 2002; Franco and Giraldo, 2002). 

 

Even if the results found here cannot be extrapolated outside the ranges of the variable values 

appearing in the collected datasets, the approach offers an adequate methodology to obtain more 

accurate information about the suitable conditions for growing under-researched crops in the 

tropics. Furthermore, the strategy of using the approaches of operational and participatory 

research, combined with farmers’ production experiences, publicly-available environmental data 

and with data-driven models, is likely to provide growers with site-specific recommendations. They 

can use these to manage their crops better according to the specific conditions of their farms and 

hence develop a SSCP according to the socio-economic and environmental circumstances in 

Colombia. 

 

6.2 CONCLUSIONS  

6.2.1 FARMERS’ PRODUCTION EXPERIENCES 

 
Farmers showed that they can play a key role in the research process. They recorded their own 

data and estimated the characteristics of their soils. Producers of Andean blackberry and lulo were 

successfully trained in how to register information on their production sites. 

 

By means of calendars developed by researchers working together with producers, 186 

smallholder farmers registered information on 742 harvest events. Small-scale growers in 

Colombia record relatively little information on crop production. They do not have the habit of 

recording data on crop production and management factors such as disease and pest control and 

fertilizer application. It was therefore not possible to analyse which particular management 

practices were associated with high yields 

 

My observations in the field suggest that small-scale farmers implement those practices that have 

rapid or immediate highly visible effects. These tend to be related to use of pesticides and 

fungicides but do not use fertilizer because it does not give immediate effects and moreover is 

costly. Hence, farmers pay little attention to this practice. According to my experience, a few do 

apply some fertilizer, commonly 15-15-15 (N-P-K). A few farmers also prune their crop, but do not 

take account of the phenological stage. 
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Soil information was provided by 41 growers with soil properties such as texture, structure, and 

surrounding terrain successfully recorded. Farmers could not measure other basic characteristics 

of soils such as slope, mottling, and pH, presumably because of the difficulty to obtain and 

manipulate the equipment required.  

 

It is noteworthy that the inferred trait of effective soil depth, captured with RASTA, was integrated 

into the analyses made for both crops and found to be a relevant factor for both. This character has 

been identified by experienced Colombian extension officers working on fruit species, as one of the 

key factors explaining production of most tropical fruit species grown in the country (Franco et al., 

2002; Franco and Giraldo, 2002; Orduz and Baquero, 2003; Bernal et al., 2005). This shows the 

great potential of RASTA to elucidate relevant factors that are likely to affect yield in other crops. 

Nevertheless, in order to draw firm conclusions of the effect of soil on yield, it is recommended that 

laboratory-based analysis of soil samples should be included in the future. This will provide more 

detailed information about soil chemical characteristics, which RASTA cannot provide.  

 

Production data for sugarcane is accurately monitored by the sugar mills to calculate payment to 

farmers. In contrast, smallholder growers of Andean blackberry and lulo recorded information 

themselves for 742 cropping events. Figures 4.2 and 5.2 reflect the reality of production for these 

crops in Colombia. Clearly, collection of large numbers of farmers’ production experiences over a 

wide range of conditions allows us to draw conclusions under the naturally-occurring variations that 

growers face. The analytical tools used in this research demonstrated that the analysis of farmers’ 

production experiences is not the biggest challenge in working with under-researched crops. 

Rather, the collection of the information required to model the system is the major constraint. In 

general, tools used in this thesis showed that farmers’ production information combined with 

publicly-available environmental data can be analysed as long as it is possible to collect sufficient 

data on how the growers manage their crop, and how much they produce. Nevertheless the 

smallholder producers who participated in this study and the experiences with CropCheck in Chile 

with small farmers show that they can provide useful information which can be analysed and used 

to improve their productivity (Lacy, 2011). 
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6.2.2 LINEAR MODEL OF RESEARCH AND TECHNOLOGY TRANSFER 

Data generated at farmers’ production sites where Andean blackberry and lulo crops are known to 

perform well was modelled to obtain insights about the combination of factors which contribute to 

both high and low yields. Research took into account the knowledge of both farmers and extension 

officers, and results are focused on combination of factors linked to productivity. This methodology 

complements the linear model of research, in the sense that it can also include formal experimental 

data where they are available. One example of the complementarity is when a new crop variety is 

produced in the linear model of research. In that case, the performance of that variety can be 

tested over a wide range of conditions, where factors vary naturally. But, this testing can be 

complemented, as in the case of lulo, to identify those producers whose yields are lower than 

those of the successful farmers, despite being under similar environmental conditions. 

6.2.3 OPERATIONAL AND PARTICIPATORY RESEARCH  

The conclusions of the research support others researchers’ conclusions on the utility of 

operational and participatory research. From farmers’ systematic observations, it was possible to 

obtain important insights to support them on how to be more efficient managing Andean blackberry 

and lulo. This approach of collecting data from observations made by farmers, and harvesting 

events, seems to be a feasible approach to develop SSCP for under-researched crops in 

Colombia.  

 

In terms of participatory research, participatory on-farm research (Conroy et al. 1999) farmers 

participated in the research presented in this thesis in two different ways. In the consultative mode, 

farmers collected information on their own farms using tools developed by researchers. In the 

collaborative mode, as farmers participated and suggested ways to make the tools developed by 

the researchers easier-to-use. For example, the format of the calendars and the RASTA 

methodology were modified several times to take into account suggestions made by farmers. 

6.2.4 PUBLICLY-AVAILABLE ENVIRONMENTAL DATA  

Through the use of digital environmental surfaces of climate and topography, it was possible to 

characterise the environments of 742 production events. The effectiveness of the data provided by 

the publicly-available environmental data is demonstrated throughout chapters 4 and 5. In both 

chapters, temperature was found to be relevant to model yield of Andean blackberry and lulo. 

Temperatures between 16–18°C and 16–19°C were associated with high productivity of Andean 

blackberry and lulo, respectively, whereas temperatures above 24°C were associated with low 

productivity of Andean blackberry. In both cases, temperature ranges agree with the author’s field 

observations, and the expert opinion of extension officers who have strong experience with both 
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crops (Franco et al., 2002; Franco and Giraldo, 2002). These publicly-available environmental data 

offer better coverage of many areas than the official weather stations in Colombia, which are 

typically neither representative of the production sites nor available to farmers. For SSCP, GPS 

data for a farmer’s field is sufficient to extract a description of its environment. For PA, more 

accuracy is needed as the land units to be analysed are smaller than those used for SSCP (see 

chapter 2).  

6.2.5 ANALYTICAL TOOLS 

The sugarcane database was useful to explore modelling techniques aimed to (a) identify variables 

that contribute most to predict outputs, (b) visualize input–input and input–output dependencies, 

and (c) determine clusters with homogeneous environmental conditions. Analysis of the sugarcane 

database using sensitivity metric showed that plant age and water balance the most important 

variables to predict the crop’s yield (Satizábal and Pérez-Uribe, 2007). Applying the same 

methodologies explained 89% of yield variation of Andean blackberry and 82% of yield variation of 

lulo. The nine most important factors for Andean blackberry were soil depth, average temperature 

of the first month before harvest, specific geographical areas, and average temperature of the 

harvest month, average temperature of the second month before harvest, average temperature of 

the third month before harvest, external drainage, and accumulated precipitation of the month 

before harvest. In lulo the most determinant factors were slope, average temperature, soil depth, 

and one locality 

 

SOM is a data exploration tool with the capability to process datasets with missing data. Through 

its “component plane” representation, SOMs allowed the identification of variables on which 

productivity of Andean blackberry depends. The variables identified as the most relevant for 

modelling Andean blackberry yield were displayed as lattices, likewise it was illustrated the range 

values of each lattice associated with productivity (see chapter 4).The same non-supervised ANN 

successfully determined clusters with similar environments where there is not enough data to 

define them. 

 

With Andean blackberry, there was an important location effect. Effect of location within and 

between clusters of environmental conditions was estimated in the lulo study in which data was 

divided into three clusters each with relatively uniform environments. The lowest-yielding farm 7 in 

cluster 3 produced 68 g plant-1 wk-1 less than average, while the highest-yielding farm 9 in the 

same cluster produced 51 g plant-1 wk-1 more than average. The difference is almost certainly due 

to management, suggesting that farm 9 managed the crop more efficiently than farm 7. 
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For crops like the Andean Blackberry and lulo there are no standard agronomic packages that 

have been developed. Farmers rely on trial and error on their own fields and also the experiences 

of their neighbours. In the case of lulo the locality was of relatively little importance suggesting that 

there was little shared local knowledge between farmers. This was reinforced by the large 

differences between farms, even in the same locality with similar climatic conditions, indicating a 

wide variety of practices used by individual farmers. On the other hand with Andean blackberry, the 

locality was of greater importance, suggesting that farmers were indeed sharing information or 

obtaining information from the same source, and using more uniform practices within a locality.  

 

We conclude that farmers through trial and error have developed practices adapted to their own 

conditions. In the case of lulo, insights on best practices reside in the mind of a handful of farmers 

and there are large opportunities for sharing information of the best farmers with others growers. In 

the case of the Andean Blackberry there are major opportunities for transferring technologies from 

high yielding localities to others with similar climatic conditions. In this research it was not possible 

to identify the particular management practices associated with high yields in a particular 

environment. However, it was possible to identify those farmers that obtained high yields. In the 

sugarcane sector in Colombia surveys of the practices used by growers who obtain the highest 

yields have been compared to those used by the majority of growers to identify the individual 

practices associated with higher yields in a given AEZ (Cock et al., 2011). This process of 

identifying the practices used by good farmers can readily be applied to Andean fruits now that 

techniques have been developed to identify those growers who manage their crops well in a given 

environment. 

 

The addition of proxies was helpful to take into account management and social factors that were 

not captured by the data collection process and that are likely to be related to a given site. When 

modelling Andean blackberry productivity, geographical areas were included in an attempt to 

estimate the effect of variables not measured, two geographic areas were identified as locations 

with higher yields. These are Nariño-La Union-Chical Alto and Nariño-La Union-Cusillo Bajo, which 

suggests that farmers in these areas manage their crops more effectively compared to elsewhere, 

even though the data was not precise enough to determine which management factors are related 

to higher yields. 

 

In lulo, assuming that homogenous environmental conditions covered the environmental variation 

that explains yield, location was included as a proxy for socio-economic conditions, whilst farm was 

incorporated as proxy for crop management. HECs and farm, respectively, explained more than 

61% and 19% of total variation, suggesting that environmental conditions and farmers’ 
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management skills are strongly associated with yield. In the study of Andean blackberry, location 

was linked to yield variation. 

 

In the case of lulo, an iterative methodology that combined ANNs with traditional statistical analysis 

gave the best methodology to interpret the variation in farmers’ production experiences. This 

agrees with one of the conclusions drawn from the survey on applications of ANNs in agriculture 

(see chapter 3), in which hybrid approaches performed better than traditional techniques.  

 

In this thesis, it has been demonstrated that ANNs techniques could be integrated into traditional 

analysis. Although, we had hoped it would be possible to use fully-automated analytical methods, 

lack of sufficient knowledge on the most relevant parameters indicated the need for an iterative 

approach. ANNs were an effective tool for managing the highly variable, noisy and qualitative data 

collected by farmers and linking these farmers’ data to publicly-available environmental databases. 

The mixed model was also effective to integrate qualitative data with multiple categorical variables 

of the same class.  

 

6.3 LIMITATIONS OF THE RESEARCH  

 
Based on the assessment of the whole approach of developing SSCP for under-researched 

tropical fruit species; several considerations should be made. 

 

One critical factor is the quality of the data collected. As might be expected, the farmers’ data 

contained errors, such as: values of plant distances out of the range, or yields in different units 

such as boxes. To the extent possible, these were corrected, for example converting boxes, which 

are usually a standard size, to kilograms. A solution might be the use of Information and 

Communication Technologies (ICTs) such as mobile phones where recording forms, units, and 

type are standardized and where there is control in real-time. Several management practices, such 

as fertilizer and pesticide applications, which are likely to affect yield, were not recorded by the 

farmers. Since they were so receptive to the RASTA methodology, further training might be useful 

to obtain this important information.  

 

It would be worthwhile to create a website that could be accessed by farmers to enter their data 

directly, with interactive data checking. This would be an efficient way to obtain on-farm data, but it 

would not be practical until access to the internet becomes more widely available in rural areas 

than it is now.  

 

http://en.wikipedia.org/wiki/Information_and_communication_technologies
http://en.wikipedia.org/wiki/Information_and_communication_technologies
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Regarding the modelling tools implemented in this research, several datasets were tested in order 

to construct data-driven models that were then implemented to model Andean blackberry and lulo 

yield. Among these databases, and in addition to the sugarcane database from Colombia, the 

Centre de Coopération Internationale en Recherche Agronomique pour le Développement 

(CIRAD) was also interested to apply artificial neural network-based models to a database of 

sugarcane from Réunion island. Different subsets of databases from “data-rich-systems” of 

sugarcane from Colombia and Réunion, were thus analysed. In the case of the datasets processed 

from Réunion island, ANNs tools used were not capable of generating correct responses when 

new input data was presented. Experts on modelling real world data at HEIG-VD, suggested that 

when the distribution of the output variable is to narrow, low generalization capabilities may occur. 

According to the latter, that distribution of data makes the Back-propagation algorithm to converge 

to a local minimum of the MSE function which sets the output of the network to the average value 

of the target. They suggest conducting more experiments focused on the use of other algorithms 

developed to minimize error, or also to transform the output by means of mathematical functions so 

as to obtain a close-to-linear distribution of values form the minimum to the maximum values. 

However, these types of experiments are out of the scope of this thesis, which deals explicitly with 

the development of a SSCP for under-researched tropical fruit species in Colombia.  

 

Another research direction that should be considered is to keep testing more data-driven 

approaches or combination of ANNs models with other statistical techniques in order to obtain 

better results, and explore their applicability to SSCP development. When modelling lulo 

productivity for instance, the robust regression applied with a stepwise procedure and the 

sensitivity analyses of the MLP were in general agreement. Thus, for future studies, it is 

recommended that before to select the best approach to model a given phenomenon, the Occam’s 

razor principle, should be taken into consideration. This principle states that “the simplest model is 

more likely to be correct-especially when we are working with an unusual phenomenon”. 

 

In this regard, for future work directed to increasing productivity of under researched and neglected 

crops we recommend that more attention be paid to (a) obtaining and compiling information on a 

wider range of farmers’ production experiences followed by an evaluation of the techniques 

needed to analyse this wider information base (b) improve the methodologies that define clusters 

of environmental conditions, (c) explore methods for identifying factors that lead to high 

productivities within each cluster, and (d) formation of farmer discussion groups that can test the 

hypothesis that more successful growers will share information with less successful farmers that 

will assist them in improving productivity. 

 



126 
 

Regarding the determination of homogenous environmental areas, in this research we made the 

assumption that environmental variables are constant over the time. Not only do the weather 

patterns change from year to year, but there are specific phenomena like the el niño-southern 

oscillation, which can alter regional climatic similarities. Therefore, it is recommended that in future; 

we would take into account this temporal context when areas with homogenous environmental 

conditions are determined. In addition, in future, it will be necessary to study in depth the effects of 

year and location, especially when validation techniques similar to those employed in this research 

are used. According to the study conducted by Landschoot et al. (2012) these validation 

techniques might generate unrealistic predictions.  

 

Although it is undoubtedly much easier to collect and analyse data for crops, such as sugarcane, 

coffee, and palm, with well-organized, strong supply chains, than those with weak supply chains as 

is the case of Andean blackberry and lulo, we have shown that it is possible to collect and analyse 

pertinent information from farmers’ production experiences. These experiences can provide 

insights on how productivity can be improved under specific environmental conditions. 

6.4 FUTURE PERSPECTIVES  

 
The strategy to develop SSCP for under-researched crops presented in this thesis, used yield, 

crop data, and other information collected by the smallholder growers themselves. These data 

were combined with publicly-available environmental data to estimate the environmental 

adaptation of the crops. 

  

There is an interest in Colombia to continue with the idea of SSCP for tropical fruit species. 

Currently, there is a project called “Site-Specific Agriculture based on Farmers Experiences” 

(SSAFE) which has included the methodology presented in this thesis. This time, the project, in 

addition to farmers’ providing yield, crop, and soil data, will collect more detailed information on 

management and farmers’ knowledge. The initiative is initially focused on four high-value but still 

under-researched crops, where in contrast to Andean blackberry and lulo, there is a more 

organized supply chain. The crops selected are: plantain (Musa balbisiana), mango (Mangifera 

indica), avocado (Persea americana) and citrus (Citrus spp.) 

 

In Colombia, it is believed that there is significant potential in SSCP for contributing to income 

generation for growers in the tropics. It is also believed that an interaction with farmers is 

mandatory in order to accomplish this task, especially by disseminating the results provided by this 

approach. We propose therefore that the cultivation of tropical fruit species in tropical countries 

may benefit from the application of SSCP in order to increase both quality and productivity. 

http://es.wikipedia.org/wiki/Mangifera_indica
http://es.wikipedia.org/wiki/Mangifera_indica


127 
 

 

BIBLIOGRAPHY 

 

 
Acosta, O., Perez, A., Vaillant, F., 2009. Chemical characterization, antioxidant properties, and 
volatile constituents of naranjilla (Solanum quitoense Lam.) cultivated in Costa Rica. ALAN 59, 88-
94. 
 
Adami, J., Gridley, G., Nyren, O., Dosemeci, M., Linet, M., Glimelius B., Ekbom, A., Zahm, S.,H., 
1999. Sunlight and non-Hodgkin's lymphoma: a population-based cohort study in Sweden. 
International Journal of cancer 80, 641-645. 
 
Aitkenhead, M.J., Dalgetty, I.A., Mullins, C.E., McDonald, A.J.S., Strachan, N.J.C., 2003. Weed 
and crop discrimination using image analysis and artificial intelligence methods. Computers and 
Electronics in Agriculture 39, 15 -171. 
 
Altieri, M.A., 2002. The science of natural resource management for poor farmers in marginal 
environments. Agriculture, Ecosystems and Environment 171, 1–24. 
 
Alvarez, D.M., Estrada, M., Cock, J.H., 2004. RASTA (Rapid Soil and Terrain Assessment). 
Facultad De Ciencias Agropecuarias. Universidad Nacional De Colombia, Palmira, p. 91. 
 
Arca, B., Benincasa, F., Vincenzi, M., 2001. Evaluation of neural network techniques for estimating 
evapotranspira. Engineering Application of Neural Networks Conference, Cagliari, pp. 62-69. 
 
Arellano, O., 2004. An Improved Methodology for Land-Cover Classification Using Artificial Neural 
Networks and a Decision Tree Classifier. Department of Geography. University of Cincinnati. 
 
Barreto, M., Pérez-Uribe, A., 2007. Improving the correlation hunting in a large quantity of SOM 
component planes. In: Proceedings of the International Conference on Artificial Neural Networks 
(ICANN 07), Porto, Portugal, pp. 379–388. 
 
Barreto, M., Jiménez, D.R., Pérez-Uribe, A., 2007. Tree-structured Self-Organizing Map 
component planes as a visualization tool for data exploration in agro-ecological modeling. In: 
Proceedings of the 6th European Conference on Ecological Modelling (ECEM’07). The 6th 
European Conference on Ecological Modelling ECEM'07, Trieste, Italy. 27-30 November, pp. 55-
56. 
 
Barreto, M., 2012. Bio-inspired computational techniques applied to the clustering and visualization 
ofspatio-temporal geospatial data. Université de Lausanne, Faculté des Hautes Etudes 
Commerciales (HEC), Département des Systemes d’Information (ISI). Switzerland. 
 
Basso, B., Ritchie, J.T., Pierce, F.J., Braga, R.P. and Jones, J.W., 2001. Spatial validation of crop 
models for precision agriculture. Agricultural Systems 68, 97-112. 
 
Bell, T.L., 1987. Space-Time Stochastic Model of Rainfall for Satellite Remote-Sensing Studies. 
Journal of Geophysical Research-Atmospheres 92, 9631-9643. 
 
Benor, D. and Harrison.,J.Q., 1977. Agricultural Extension: The Training and Visit System World 
Bank. 
 
Bellman, R.E., 1961. Adaptive Control Processes, Princeton University Press, Princeton, NJ. 
 



128 
 

Bernal, J., Diaz, C., Tamayo, A., Córdoba, O., Tamayo, P., Londoño M., 2005. Tecnología para el 
cultivo de aguacate. Manual Técnico 5. Corpoica. Centro de Investigación La Selva. Rionegro, 
Antioquia. 
 
Bessant, J. and Francis, D., 1999. Developing strategic continuous improvement capability. 
International Journal of Operations & Production Management 19, 1106 - 1119.  
 
Białobrzewski, I., 2008. Neural modeling of relative air humidity. Ecological Modelling 60, 1-7. 
 
BIOTEC., 2007. Agricultura específica por sitio en frutales. Calendario para toma de información 
en el cultivo del Lulo. 
 
Bioversity International., 2005a. Information Sheet on Rubus glaucus in New World Fruits 
Database.URL: 
http://www.bioversityinternational.org/databases/new_world_fruits_database/search.html. 
Accessed on August 10th 2009. 
 
Bioversity International., 2005b. Information Sheet on Solanum quitoense in New World Fruits 
Database. URL: 
http://www.bioversityinternational.org/databases/new_world_fruits_database/search.html. 
Accessed on August 16th 2009. 
 
Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford. 
 
Boaventura, J., 2003. Greenhouse Climate Models: An Overview. EFITA 2003, Debrecen, 
Hungary. 
 
Bocco, M., Ovando, G., Sayago, S., 2006. Development and evaluation of neural network models 
to estimate daily solar radiation at Córdoba, Argentina. Pesquisa Agropecuária Brasileira 41, 179-
184. 
 
Boishebert, d.V., Giraudel, J.L., Montury, M., 2006. Characterization of strawberry varieties by 
SPME–GC–MS and Kohonen self-organizing map. Chemometrics and Intelligent Laboratory 
Systems 80, 13 - 23. 
 
Bongiovanni, R. and Lowenberg-Deboer, J., 2004. Precision Agriculture and Sustainability. 
Precision Agriculture 5, 359–387. 
 
Braun, H.-J., Rajaram S., Van Ginkel, M., 1996. CIMMYT's approach to breeding for wide 
adaptation. Euphytica 92, 175-183. 
 
Broner, I., Comstock, C.R., 1997. Combining expert systems and neural networks for learning site-
specific conditions. Computers and Electronics in Agriculture 19, 37–53. 
 
Brown, G., Wyatt, J.L., Harris,R., Yao,X., 2005. Diversity creation methods. A survey and 
categorisation. Information Fusion 6, 5 - 20. 
 
Burks, T.F., Shearer, S.A., Heath, J.R., Donohue, K.D., 2005. Evaluation of Neural-network 
Classifiers for Weed Species Discrimination. Biosystems Engineering 91, 293-304. 
 
Carbonell, G.J., Amaya, E.A., Ortiz, B.V., Torres, J.S., Quintero, R. and Isaacs, C., 2001. 
Zonificación agroecológica para el cultivo de caña de azúcar en el valle del río Cauca. (Agro-
ecological zoning for the sugarcane crop in the Cauca River Valley.) Tercera aproximación. 
Technical Series CENICAÑA no 29. Cali, Colombia. 
 

http://www.bioversityinternational.org/databases/new_world_fruits_database/search.html
http://www.bioversityinternational.org/databases/new_world_fruits_database/search.html


129 
 

Cassman, K., 1999. Ecological intensification of cereal production systems: Yield potential, soil 
quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United 
States of America 96, 5952-5959. 
 
Castelló-Climent, A., 2008. On the distribution of education and democracy.Journal of 
Development Economics 87, 179-190. 
 
CENICAÑA, 2006. Informe anual 2005. Centro de Investigación de la Caña de Azúcar de 
Colombia (CENICAÑA). Servicio de análisis económico y estadístico, Cali, p. 96. 
 
Chambers, R. and Ghildyal, B., 1985. Agricultural Research for Resource Poor Farmers -The 
Farmer First and Last Model. Agricultural Administration 20, 1-30. 
 
Chambers, R., Pacey, A. and Thrupp, L., 1989. Farmer First: Farmer Innovation and Agricultural 
Research. Intermediate Technology Publications. London. 
 
Chon, T.S., Park, Y.S., Moon, K.Y., Cha, E.Y., 1996. Patternizing communities by using an artificial 
neural network. Ecological Modelling 90, 69-78. 
 
Chung Lu, H., Hsieh, J.H., Chang, T.S., 2006. Prediction of daily maximum ozone concentrations 
from meteorological conditions using a two-stage neural network. Atmospheric Research 81, 124– 
139. 
 
Cock, J.,1985. Stability of Performance of Cassava Genotypes. In: C.H. Hershey (ed.). Proceeding 
Workshop Cassava Breeding. A Multidisciplinary Review. Los Banos, Philippines, pp. 177-206. 
 
Cock, J. and Luna, C.A.,1996. Analysis of Large Commercial databases for decision making. 
In:Sugar 2000 Symposium. (Eds.).CSIRO, Brisbane, Australia, pp. 24-25. 
 
Cock, J., 2007. Sharing commercial information. In: Innovation Workshop for the Agricultural 
Sector: Site Specific Agriculture based on Sharing Farmers Experiences, CIAT, Cali, Colombia, 
October, URL:http://biotec.univalle.edu.co/Memorias.htm. 
 
Cock, J., Oberthür, T., Isaacs, C., Läderach, P., Palma, A., Carbonell, J., Watts, G., Amaya, A., 
Collet, L., Lema, G. and Anderson, E., 2011. Crop Management Based on Field Observations: 
case studies in sugarcane and coffee. Agricultural Systems 104, 755-769. 
 
Conroy, C., Sutherland. and Martin A., 1999. Conducting farmer participatory research: what, when 
and how to be published in Decision Tools for Development. Ian Grant and Chris Sear (Eds). NRI 
Chatham.  
 
Danielson, R.E. and Sutherland, P.L., 1986. Porosity. In: Klute.A. (Ed.), Methods of soil 
analisys.Part 1. Physical and mineralogical methods. American Society of Agronomy/ Soil Science 
society of America, Madison, pp. 443-462. 
 
Davies, D.L., Bouldin, D.W., 1979. A cluster separation measure. IEEE Transactions on Pattern 
Analysis and Machine Intelligence (TPAMI) 1, 95-104. 
 
Deadman, P., Gimblett, H.R., 1997. An Application of Neural Net Based Techniques and GIS for 
Vegetation Management and Restoration., AI Applications. 
 
Diamantopoulou, M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume 
estimation. Computers and Electronics in Agriculture 48, 235-244. 
 

http://biotec.univalle.edu.co/Memorias.htm


130 
 

Dietterich, T.J., 2000. "Ensemble Methods in Machine Learning". In: Multiple Classifier Systems 
First International Workshop (MCS 2000), Cagliari, Italy, pp. 1-15. 
 
Dimopoulos, I., Chronopoulos, J., Chronopoulou-Sereli, A., Lek, S., 1999. Neural network models 
to study relationships between lead concentration in grasses and permanent urban descriptors in 
Athens city. Ecological Modelling 120, 157–165. 
 
Edgerton, D., 2004 The linear model’ did not exist: Reflections on the history and historiography of 
science and research in industry in the twentieth century. In: Karl Grandin and Nina Wormbs 
(Eds.). The Science-Industry Nexus: History, Policy, Implications. New York, Watson. 
 
Edwin, J. and Masters, W.A., 2005. Genetic Improvement and Cocoa Yields in Ghana. 
Experimental Agriculture 41,491-503. 
 
Efron, B., 1983. the Error Rate of a Prediction Rule: Improvement on Cross-Validation. 
Journal of the American Statistical Association 78, 316-331. 
 
Erazo, E.O., 2011. Efecto de los factores limitantes de la productividad del cultivo de caña de 
azúcar a nivel intrasuerte, Universidad Nacional De Colombia, Palmira. 
 
Estrada, l.E., 1992. Genetic Potential Of Lulo (Solanum quitoense Lam.) And Factors That Limit Its 
Expression. Acta Horticulturae 310,171-182. 
 
Evans, L.T. and Fischer, R.A., 1999. Yield Potential: Its Definition, Measurement, and Significance. 
Crop Science., 39:1544-1551. 
 
Evenson, R., 1981. Developing a state extension program - TOPCROP in Victoria. 
 
FAO-Unesco.1974. Soil Map of the World 1:5 000 000. Vol.1. Legend. Unesco. Paris. pp. 59. 
 
Faraway, J.J., 2002. Practical Regression and Anova using R.Available from the R Project. 
http://cran.r-project.org/ 213 p. 
 
Farkas, I., Reményi, P., Biro, A., 2000. Modelling aspects of grain drying with a neural network. 
Computers and Electronics in Agriculture 29, 99–113. 
 
Farr, T.G., Kobrick, M., 2000. Radar Topography Mission produces a wealth of data American 
Geophysical Union Eos 81, 583-585. 
 
Filmer, D., Pritchett., L., 1999. "The Effect of Household Wealth on Educational Attainment: 
Evidence from 35 Countries." Population and Development Review. Population and Development 
Review 25, 85-120. 
 
Flórez, S.L., Lasprilla, D.M., Chaves, B., Fischer, G. and Magnitskiy, S., 2008. Growth of lulo 
(Solanum quitoense Lam.) plants affected by salinity and substrate. Revista Brasileira de 
Fruticultura 30, 402-408. 
 
Foody, G.M., 1999. Applications of the self-organising feature map neural network in community 
data analysis. Ecological Modelling 120, 97–107. 
 
Foody, G.M., Cutler, M.E.J., 2006. Mapping the species richness and composition of tropical 
forests from remotely sensed data with neural networks. Ecological Modelling 195, 37-42. 
 



131 
 

Framingham heart study., 2006. Framingham Heart Study. A project of the national heart, lung, 
and blood institute and Boston university. URL: www.nhlbi.nih.gov/about/framingham. Accessed on 
July 7th 2006. 
 
Francl, L.J., 2004. Squeezing the turnip with artificial neural nets. Phytopathology 94, 1007-1012. 
 
Franco, G., Bernal, J.E., Giraldo, M.J., Tamayo, J., Castaño, P., Tamayo, V., Gallego, J., Leomad, 
J., Botero M.J., Rodríguez, J., Guevara, N., Morales, J., Londoño, M., Ríos, G., Rodríguez, J., 
Cardona, J., Zuleta, J., Castaño, J., Ramírez, C., 2002. El cultivo del lulo: Manual técnico 
Corporación Colombiana de Investigación Agropecuaria (CORPOICA), Regional nueve, 
Manizales. 
 
Franco, G., Giraldo, M., 2002. Condiciones ambientales del cultivo de la mora. In: Corporacion 
colombiana de investigacion agropecuaria, regional nueve (Ed.),El cultivo de la mora, CORPOICA, 
Manizales, pp. 1–3. 
 
Gauch, H.G. and Zobel, R.W., 1997. Identifying mega-environments and targeting genotypes. Crop 
Science 37, 311-326. 
 
García, J. ,2003. Evaluación del crecimiento de dos ecotipos de lulo amazónico (Solanum 
sessiliflorum Dunal) bajo tres ambientes en el piedemonte amazónico del Caquetá. Universidad 
Nacional De Colombia, Bogotá, p. 63. 
 
Gevrey, M., Dimopoulos, I., Lek, S., 2003. Review and comparison of methods to study the 
contribution of variables in artificial neural network models. Ecological Modelling 160, 249-264. 
 
Giraudel, J.L., Lek, S., 2001. A comparison of self-organizing map algorithm and some 
conventional statistical methods for ecological community ordination. Ecological Modelling 146, 
329-339. 
 
Gitterle, T., Martinez, W., Marimon, F., Salazar, M., Faillace, J., Suarez, A., Cock, J., 2009. 
Commercial field performance as a measure of genetic improvement in the Pacific White Shrimp 
Penaeus (Litopenaeus) vannamei. International Symposium of Genetics in Aquaculture. Bangkok, 
Thailand. 
 
Glezakos, T.J., Moschopoulou, G., Tsiligiridis, T.A., Kintziosb, S., Yialouris, C.P., 2010. Plant virus 
identification based on neural networks with evolutionary preprocessing. Computers and 
Electronics in Agriculture 70, 263-275.  
 
Goodman, K., Correa, P., Tengana, H.J., Ramirez, H., DeLany, J.P., Pepinosa, O.G., Quiñones, 
M., Parra, T., 1996. Helicobacter pylori Infection in the Colombian Andes: A Population-based 
Study of Transmission Pathways. American Journal of Epidemiology 144, 290-299. 
 
Goutte, C., 1997. Note on Free Lunches and Cross-Validation. Neural Computation 9, 1245-1249. 
 
Granitto, P.M., Navone, H.D., Verdes, P.H., Ceccatto, H.A., 2000. Automatic Identification Of 
Weed Seeds By Color Image Processing. VI Argentine Congress on Computer Science Ushuaia, 
Argentina. 
 
Green, T.R., Salas, J.D., Martinez, A., Erskine, R.H., 2007. Relating crop yield to topographic 
attributes using Spatial Analysis Neural Networks and regression. Geoderma 139, 23-37. 
 
Grijalba, C., Calderón, L., Pérez, M., 2010. Rendimiento y calidad de la fruta en mora de castilla 
(Rubus glaucus Benth), con y sin espinas, cultivada en campo abierto en Cajicá – Cundinamarca- 
Colombia. Revista de la Facultad de Ciencias Básicas, Bogotá 6, 24-41. 



132 
 

 
Grimm, V., 1999. Ten years of individual-based modelling in ecology: what have we learned and 
what could we learn in the future?. Ecological Modelling 115, 129-148. 
 
Gupta, R., Narayana, B., Reddy, P.K., Rangarao, G.V., Gowda, C., Reddy, Y., Murthy, G.R., 2003. 
Understanding Helicoverpa armigera Pest Population Dynamics related to Chickpea Crop Using 
Neural Networks. Third International Conference on Data Mining. IEEE Computer Society Press, 
Florida, USA. 
 
Guyer, D.E., Yang, X., 2000. Use of genetic artificial neural networks and spectral imaging for 
defect detection on cherries. Computers and Electronics in Agriculture 29, 179–194. 
 
Hall, A., 2005. Capacity development for agricultural biotechnology in developing countries: an 
innovation systems view of what it is and how to develop it. Journal of International Development 
17 ,611-630. 
 
Hashimoto, Y., 1997. Special issue: Applications of artificial neural networks and genetic 
algorithms to agricultural systems. Computers and Electronics in Agriculture 18, 71-72. 
 
Higgins, A., Prestwidge, D., Stirling, D., Yostc, J., 2010. Forecasting maturity of green peas: An 
application of neural networks. Computers and Electronics in Agriculture 70, 151-156. 
 
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution 
interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-
1978. 
 
Hijmans, R.J., Guarino, L., Jarvis, A., O'Brien, R., Mathur, p., Bussink, C., Cruz, M., Barrantes, I. 
and Rojas, E., 2005. DIVA-GIS Version 5.2.Manual. 
 
Hilbert, D.W., Ostendorf, B., 2001. The utility of artificial neural networks for modelling the 
distribution of vegetation in past, present and future climates. Ecological Modelling 146, 311-327. 
 
Hilera, J.R., Martínez, V.J., 1995. Redes neuronales artificiales: Fundamentos, modelos y 
aplicaciones, Rama, Madrid. 
 
Himberg, J., 1998. Enhancing the SOM-based Data Visualization by Linking Different Data 
Projections. Proceedings of 1st International Symposium IDEAL’98, Intelligent Data Engineering 
and Learning–Perspectives on Financial Engineering and Data Mining. pp. 427-434. 
 
Hoogenboom, G., Georgiev, G., Gresham, D., 2000. Development of weather based products for 
agricultural and environmental applications. Preprints of the 24th Conf. On Agricultural and Forest 
Meteorology,. American Meteorological Society., Boston, Mass, pp. 66-67. 
 
Hsieh, W., 2009. Machine Learning Methods in the Environmental Sciences.Cambridge University 
Press.Cambridge.,UK. 
 
Huang, K-Y., 2007. Application of artificial neural network for detecting Phalaenopsis seedling 
diseases using color and texture features. Computers and Electronics in Agriculture 57, 3-11. 
 
Huffman, G.J., Adler, R.F., Rudolf, B., Schneider, U., Keehn, P.R., 1995. Global precipitation 
estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and 
NWP model precipitation information. Journal of Climate 8, 1284-1295. 
 
Isaacs, C., 1999. SEGUITEC. Seguimiento de tecnología. Carta trimestral. CENICAÑA. 21:25-29. 
 



133 
 

Isaacs, C., Carrillo, V.E., Caicedo, M., Paz, H.G. and Palma, Z., 2000. Los clientes de la nueva 
tecnología. Censo y tipificación de productores de caña de azúcar en la industria azucarera 
colombiana, (The new technology customers. Census and typification of sugarcane growers in the 
Colombian Sugarcane Industry). Technical Series CENICAÑA no 27. Cali, Colombia. 
 
Isaacs, C., Carrillo, C., Anderson, A., Carbonell, C.J., Ortiz, U., 2004. Desarrollo de un sistema 
interactivo de información en web con el enfoque de agricultura específica por sitio. CENICAÑA 
Serie Tecnica 34. 
 
Isaacs, C.H., Carbonell, J.A., Amaya, A., Torres, J.S., Victoria, J.I., Quintero, R., Palma, A.E., 
Cock, J.H., 2007. Site-specific Agriculture And Productivity In The Colombian Sugar Industry. In: 
Proceedings of the 26th congress International Society of Sugar Cane Technologists (ISSCT),. 
Durban, South Africa. 
 
Jain, A., 2003. Predicting air temperature for frost warning using artificial neural networks. Thesis. 
Institute for Artificial Intelligence, The University of Georgia, USA. 
 
Jarvis, A., Reuter, H.I., Nelson, A. and Guevara, E., 2006. Hole-filled SRTM for the globe Version 
3. CGIAR-CSI SRTM 90m Database: http://srtm.csi.cgiar.org. 
 
Jiménez, D., Satizábal, H.F. and Pérez-Uribe, A., 2007. Modelling Sugar Cane Yield Using Artificial 
Neural Networks The 6th European Conference on Ecological Modelling, Trieste, Italy. 27-30 
November, pp. 244-245. 
 
Jiménez, D., Pérez-Uribe, A., Satizábal, H.F., Barreto, M., Van Damme, P., Tomassini, M., 2008. A 
survey of artificial neural network-based. modeling in agroecology. In: Prasad, B. (Ed.). 
Softcomputing Applications in industry, Springer-Verlag, Berlin Heidelberg, pp. 247-269. 
 
Jiménez, D., Cock, J., Satizábal, F., Barreto, M., Pérez-Uribe, A., Jarvis, A., Van Damme, P., 2009. 
Analysis of Andean blackberry (Rubus glaucus) production models obtained by means of artificial 
neural networks exploiting information collected by small-scale growers in Colombia and publicly-
available meteorological data. Computers and Electronics in Agriculture 69, 198-208.  
 
Jiménez, D., Cock, J., Jarvis, A., Garcia, J., Satizábal, H.F., Damme, P.V., Pérez-Uribe, A. and 
Barreto-Sanz, M.A., 2011. Interpretation of commercial production information: A case study of lulo 
(Solanum quitoense), an under-researched Andean fruit. Agricultural Systems 104, 258-270. 
 
Jones , P. and Gladkov , A., 2003. A Computer Tool for Predicting the Distribution of Plants and 
Other Organisms in the Wild. Version 1.02. Centro Internacional de Agricultura Tropical (CIAT): 
Cali, Colombia. 
 
Jones, P., Diaz, W. and Cock, J., 2005. Homologue: A Computer System for Identifying Similar. 
Environments throughout the Tropical World. Version Beta a. Centro Internacional de Agricultura 
Tropical (CIAT): Cali, Colombia. 
 
Kannan, V.R., Tan, K.C., 2005. Just in time, total quality management, and supply chain 
management: understanding their linkages and impact on business performance. Omega. The 
international Journal of management science 33, 153-162. 
 
Kaul, M., Hill, R.L., Walthall, C., 2005. Artificial neural networks for corn and soybean yield 
prediction. Agricultural Systems 85, 1-18. 
 
Kavdır, I., 2004. Discrimination of sunflower, weed and soil by artificial neural networks. Computers 
and Electronics in Agriculture 44, 153–160. 
 

http://srtm.csi.cgiar.org/


134 
 

Kehagias, A., Panagiotou, H., Maslaris, N., Petridis, V., Petrou, L., Spais, V., 1998. Predictive 
Modular Neural Networks Methods for Prediction of Sugar Beet Crop Yield. IFAC Conference on 
Control Applications and Ergonomics in Agriculture, Athens, Greece. 
 
Khakural, B.R., Robert, P.C., Huggins, D.R., 1999. Variability of corn/soybean yield and 
soil/landscape properties across a southern Minnesota landscape. In: P. C. Robert, R.H.R., and W. 
E.Larson. Precision agriculture: Proceedings of the Fourth International Conference (Ed.), 
Madison, WI, USA, pp. 573–579. 
 
Kim, M., Gilley, J.E., 2008. Artificial Neural Network estimation of soil erosion and nutrient 
concentrations in runoff from land application areas. Computers and Electronics in Agriculture 64, 
268-275. 
 
Koekoek, E.J.W., Booltink, H., 1999. Neural network models to predict soil water retention. 
European Journal of Soil Science 50, 489-495. 
 
Kohonen, T., 1995. Self-Organizing Maps, Springer, USA. 
 
Kondo, N., Ahmad, U., Monta, M., Murase, H., 2000. Machine vision based quality evaluation of 
Iyokan orange fruit using neural networks. Computers and Electronics in Agriculture 29, 135–147. 
 
Kravchenko, A.N., Bullock, D.G., 2000. Correlation of corn and soybean grain yield with 
topography and soil properties. Agronomy Journal 92, 75–83. 
 
Kummerow, C., Barnes, W., Kozu, T., Shiue, J., Simpson, J., 1998. The Tropical Rainfall 
Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology 15, 
809-817. 
 
Lacy, J., 2011. Cropcheck: Farmer benchmarking participatory model to improve productivity. 
Agricultural Systems 104, 562-571. 
 
Läderach, P., 2009. Management of intrinsic quality characteristics for high-value specialty coffees 
of heterogeneous hillside landscapes. A Framework Developed and Tested in Coffee Growing 
Regions Across Latin America. Verlag Dr Müller, Saarbrücken, Germany.:1–157. 
 
Läderach, P., Oberthür, T., Cook, S., Estrada Iza, M., Pohlan, J.A., Fisher, M. and Rosales 
Lechuga, R., 2011. Systematic agronomic farm management for improved coffee quality. Field 
Crops Research 120, 321-329. 
 
Landschoot, S., Waegeman, W., Audenaert, K., Vandepitte, J., Haesaert, G. and De Baets, B., 
2012. Toward a Reliable Evaluation of Forecasting Systems for Plant Diseases: A Case Study 
Using Fusarium Head Blight of Wheat. Plant Disease 96, 889-896. 

 
Lanzante, J.R., 1996. Resistant, robust and non-parametric techniques for the analysis of climate 
data: theory and examples including applications to historical radiosonde station data. International 
Journal of Climatology 16, 1197-1226. 
 
La Patria., 2011. Tener variedades resistentes a la roya no es suficiente si no las siembran. La 
Patria, Manizales. http://www.lapatria.com/story/tener-variedades-resistentes-la-roya-no-es-
suficiente-si-no-las-siembran. 
 
Lawes, R.A. and Lawn, R.J., 2005. Applications of industry information in sugarcane production 
systems. In: Sugarcane physiology: Integrating from cell to crop to advance sugarcane production. 
 

http://www.lapatria.com/story/tener-variedades-resistentes-la-roya-no-es-suficiente-si-no-las-siembran
http://www.lapatria.com/story/tener-variedades-resistentes-la-roya-no-es-suficiente-si-no-las-siembran


135 
 

N. Geoff Inman-Bamber and Graham D. Bonnett and Peter J. Thorburn and D. Mark Smith (Eds.). 
Field Crops Research 92, 353-363. 
 
Levine, E.R., Kimes, D.S., Sigillito, V.G., 1996. Classifying soil structure using neural networks. 
Ecological Modelling 92, 101-108. 
 
Li, B., 2002. Spatial Interpolation Of Weather Variables Using Artificial Neural Networks Artificial 
Intelligence. University of Georgia, Athens. 
 
Liu, M. and Samal, A., 2002. A fuzzy clustering approach to delineate agroecozones. Ecological 
Modelling 149, 215-228. 
 
Ljung, L., 1999. System Identification - Theory For the UserUser, 2nd ed., PTR Prentice-Hall, Inc, 
Upper Saddle River, N.J., USA. 
 
Lyon, F., 1996. How farmers research and learn: The case of arable farmers of East Anglia,UK. 
Agriculture and Human Values 13, 39 - 47. 
 
Marsh, S.P. and Pannell D., 2000. Agricultural extension policy in Australia: the good, the bad and 
the misguided. The Australian Journal of Agricultural and Resource Economics 44, 605-627. 
 
Medina, C., I., Martinez, E., Lobo, M., 2008. Lulo (Solanum quitoense Lam) Biomass Partitioning 
Under Full Sunhine Light At The Low Mountain Rain Forest Of East Antioquia, Colombia. Revista 
Facultad Nacional de Agronomía, Medellín 61, 4256-4268. 
 
Miao, Y., Mulla, D.J., Robert, P.C., 2006. Identifying important factors influencing corn yield and 
grain quality variability using artificial neural networks. Precision Agriculture 7, 117–135. 
 
Montaner, J.G., 2004. Successful integration of research and extension combining private and 
public organizations: lessons from Argentina. 4th International Crop Science Congress. Crop 
Science Congress, Brisbane, Australia. 26 Sept- 4 Oct. 
 
Montgomery, M.R., Gragnolati, M., Burke, K.A., Paredes, E., 1999. Measuring Living Standards 
with Proxy Variables. Demography 37, 155-174. 
 
Morimoto, T., Hashimoto, Y., 2000. AI approaches to identification and control of total plant 
production systems. Control Engineering Practice 8, 555-567. 
 
Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., Ramon, H., 2005. Plant 
disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging 
using Kohonen maps. Real-Time Imaging 11, 75–83. 
 
Moshou, D., Vrindts, E., Ketelaere, D.B., Baerdemaeker, D.J., Ramon, H., 2001. A neural network 
based plant classifier. Computers and Electronics in Agriculture 31, 5–16. 
 
Moshou, D., Ramon, H., Baerdemaeker, D.J., 2002. A Weed Species Spectral Detector Based on 
Neural Networks. Precision Agriculture 3, 209–223. 
 
Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H., 2004. Automatic detection 
of ‘yellow rust’ in wheat using reflectance measurements and neural networks. Computers and 
Electronics in Agriculture 44, 173–188. 
 
Murase, H., 2000. Special issue:artificial intelligence in agriculture. Computers and Electronics in 
Agriculture 29, 1-2. 
 



136 
 

Nagendra, S.M.S., Khare, M., 2006. Artificial neural network approach for modelling nitrogen 
dioxide dispersion from vehicular exhaust emissions. Ecological Modelling 190, 99–115. 
 
Nakano, K., 1997. Application of neural networks to the color grading of apples. Computers and 
Electronics in Agriculture 18, 105-116. 
 
National Research Council., 1989. Lost crops of the Incas: little known plants of the Andes with 
promise for worldwide cultivation., National Academy Press, Washington, D.C., USA. 
 
National Research Council., 1997. Precision Agriculture in the 21st Century: Geospatial and 
Information Technologies in Crop Management. Committee on Assessing Crop Yield: Site-Specific 
Farming, Information Systems, and Research Opportunities. National Academy Press, Washington 
D.C. pp. 73. 
 
Niederhauser, N., Oberthür, T., Kattnig, S., Cock, J., 2008. Information and its management for 
differentiation of agricultural products: the example of specialty. Computers and Electronics in 
Agriculture 61, 241-253. 
 
Noble, P.A., Tribou, E.H., 2007. Neuroet: An easy-to-use artificial neural network for ecological and 
biological modeling. Ecological Modelling 203, 87-98. 
 
Noguchi, N., Reid, J.F., Zhang, Q., Tian, L.F., 1998. Vision Intelligence For Precision Farming 
Using Fuzzy Logic Optimized Genetic Algorithm And Artificial Neural Network. ASAE Paper 
983034 St. Joseph, MI. UILU-ENG-98-7020. 
 
Noguchi, N., Terao, T., 1997. Path planning of an agricultural mobile robot by neural network and 
genetic algorithm. Computers and Electronics in Agriculture 18, 187-204. 
 
O'Brien, R., 2004. Spatial decision support for selecting tropical crops and forages in uncertain 
environments, Perth. 
 
O'Grady, K.E., Medoff, D.R., 1988. Categorical variables in multiple regression: some cautions., 
Multivariate Behavioral Research, Society of Multivariate Experimental Psychology, Fort Worth, 
TX, ETATS-UNIS. 
 
Oide, M., Ninomiya, S., 2000. Discrimination of soybean leaflet shape by neural networks with 
image input. Computers and Electronics in Agriculture 29, 59-72. 
 
Operational research society., 2006. 
http://www.orsoc.org.uk/orshop/(0tic0pjmqgos3ajjs1zaww55)/orhomepage2.aspx. Accessed on 
July 7th 2006. 
 
Orduz, J.O. and Baquero.J., 2003. Aspectos básicos para el cultivo de los cítricos en el 
piedemonte llanero. Revista Achagua 7, 7-20. 
 
Osorio, C., Duque, C. and Batista-Viera, F., 2003. Studies on aroma generation in lulo (Solanum 
quitoense): enzymatic hydrolysis of glycosides from leaves. Food Chemistry 81, 333-340. 
 
Overton, M., 2006. Agricultural Revolution in England.  
 
Ozesmi, S. L., Tan, C.O. and Ozesmi, U., 2006. Methodological issues in building, training, and 
testing artificial neural networks in ecological applications. Ecological Modelling 195, 83-93. 
 



137 
 

Park, S.J., Hwang, C.S., Vlek, P.L.G., 2005. Comparison of adaptive techniques to predict crop 
yield response under varying soil and land management conditions. Agricultural Systems 85, 59-
81. 
 
Park, Y.S., Cérégino, R., Compin, A. and Lek, S., 2003. Applications of artificial neural networks for 
patterning and predicting aquatic insect species richness in running waters. Ecological Modelling, 
160, 265-280. 
 
Paruelo, J.M., Tomasel, F., 1997. Prediction of functional characteristics of ecosystems: a 
comparison of artificial neural networks and regression models. Ecological Modelling 98, 173-186. 
 
Pasgianos, G.D., Arvanitis, K.G., Polycarpou, P., Sigrimis, N., 2003. A non-linear feedback 
technique for greenhouse environmental control. Computers and Electronics in Agriculture 40, 153-
177. 
 
Paul, P.A., Munkvold, G.P., 2005. Regression and Artificial Neural Network Modeling for the 
Prediction of Gray Leaf Spot of Maize. Phytopathology 95, 388-396. 
 
PAVUC., 2010. Producir valor agregado a partir de productos subutilizados. 
URL:http://www.pavuc.soton.ac.uk/Default.aspx. Accessed on September 10th 2009. 
 
Peña-Reyes, C., 2002. Coevolutionary Fuzzy Modeling. Section d’informatique. Ecole 
Polytechnique Fédérale De Lausanne (EPFL), Lausanne, Suisse. 
 
Pérez-Uribe, A., 1998. Artificial Neural Networks:Algorithms and Hardware Implementation. In: 
Tomassini, D.M.a.M. (Ed.), Bio-Inspired Computing Machines: Toward Novel Computational 
Architectures, PPUR Press, pp. 289-316. 
 
Philip, N.S., Joseph, K.B., 2003. A neural network tool for analyzing trends in rainfall. Computers & 
Geosciences 29, 215-223. 
 
Piepho, H.P., 1994. Best Linear Unbiased Prediction (BLUP) for regional yield trials: a comparison 
to additive main effects and multiplicative interaction (AMMI) analysis. Theoretical and Applied 
Genetics 89, 647-654. 
 
Piepho, H.P., Mohring, J., 2005. Best Linear Unbiased Prediction of Cultivar Effects for Subdivided 
Target Regions. Crop Science 45, 1151–1159.  
 
Pollock, C.J., 1990. The response of plants to temperature change. The Journal of Agricultural 
Science 115, 1-5. 
 
Pretty, J., 1991. Farmers' Extension Practice and Technology Adaptation: Agricultural Revolution in 
17-19th Century Britain. Agriculture and Human Values 8, 132-148  
 
Proceedings of the 14th Annual Symposium on Precision Agriculture in Australasia., 2010. Centre 
for Precision Agriculture and SPAA Precision Agriculture Australia.14th Annual Symposium on 
Precision Agriculture in Australasia,Albury, New South Wales Australia. 2 - 3 September, pp. 5-55. 
 
Pulido, S., Bojacá, C.R., Salazar, M. and Chaves, B., 2008. Node appearance model for Lulo 
(Solanum quitoense Lam.) in the high altitude tropics. Biosystems Engineering 101, 383-387. 
 
Quintero, R. and Castilla, C., 1992. Agrupación de los suelos del valle geográfico del río Cauca. 
(Soil groups in the Cauca) Technical Series CENICAÑA no 8. Cali, Colombia. 
 



138 
 

Rabe-Hesketh, S., Skrondal, A., 2008. Multilevel and Longitudinal Modeling Using Stata, 2nd 
edition, Stata Press,College Station, Texas. pp.156-160. 
 
Raju, K.S., Kumar, D.N., Ducksteinc, L., 2006. Artificial neural networks and multicriterion analysis 
for sustainable irrigation planning. Computers & Operations Research 33, 1138–1153. 
 
Ramos, F.A., Delgado, J.L., Bautista, E., Morales, A.L., Duque, C., 2005. Changes in volatiles with 
the application of progressive freeze-concentration to Andes berry (Rubus glaucus Benth. Journal 
of Food Engineering 69, 291–297. 
 
Razali, N.M., Wah, Y.B. , 2011. Power comparisons of Shapiro-Wilk Kolmogorov-Smirnov, Lilliefors 
and Anderson-Darling tests. Journal of Statistical modeling and Analytics 2, 21-33. 
 
Ripley, B.D., 1996. Pattern Recognition and Neural Networks, Cambridge University Press, 
Cambridge. 
 
Rist, G., 1997. The History of Development: from Western Origins to Global Faith. New Edition. 
Zed Books. London. 
 
Robinson, G.K., 1991. That BLUP is a Good Thing: The Estimation of Random Effects. Statistical 
Science 6, 15-32. 
 
Rosenheim, J.A., Parsa, S., Forbes, A.A., Krimmel, W.A., Law Y.H., Segoli, M., Segoli M, Sivakoff, 
F.S., Zaviezo, T. and Gross, K., 2011. Ecoinformatics for integrated pest management: expanding 
the applied insect ecologist's tool-kit. Journal of Economic Entomology 104, 331-342. 
 
Rousseeuw, P., Leroy, A., 1987. Robust Regression and Outlier Detection. New York. 
 
Russell, D.B. and Ison, R.L., 2000. The Research Development Relationship in Rural 
Communities: An opportunity for contextual science. In: Agricultural and Extension and Rural 
Development: Breaking out of traditions (Eds): Cambridge University Press. pp 10-29. 
 
Sandoval, H., 2011. Cafeteros se resisten a sembrar variedad Colombia, pese a los estragos de la 
roya. La Republica Colombia, Bogotá. http://www.larepublica.com.co/archivos/ECONOMIA/2011-
01-12/cafeteros-se-resisten-a-sembrar-variedad-colombia-pese-a-los-estragos-de-la-
roya_118953.php. 
 
Sargent, D.J., 2001. Comparison of artificial neural networks with other statistical approaches. 
Cancer Supplement 91, 1636-1642. 
 
Sarle, W.S., 1994. Neural Networks and Statistical Models. Proceedings of the Nineteenth Annual 
SAS Users. Group International Conference. SAS Institute.Cary, NC, USA, 1538-1550. 
 
Satizábal, H.F., Jiménez, D.R., Pérez-Uribe, A., 2007. Consequences of Data Uncertainty and 
Data Precision in Artificial Neural Network Sugar Cane Yield Prediction. Computational and 
Ambient Intelligence, pp. 1147-1154. 
 
Satizábal, H.F., Pérez-Uribe, A., 2007. Relevance Metrics to Reduce Input Dimensions. ICANN 07 
International Conference on Artificial Neural Networks, Porto, Portugal. 9 – 13 September pp. 39-
48. 
 
Satizábal H.F., 2010. Using Biological Inspiration to Perform Incremental Modelling Tasks. Thesis. 
Université de Lausanne, Faculté des Hautes Etudes Commerciales (HEC), Département des 
Systemes d’Information (ISI). Switzerland. 
 



139 
 

Satizábal, H., Barreto-Sanz, M., Jiménez, D., Pérez-Uribe, A., Cock, J., Bolay, J.-C., Schmid, M., 
Tejada, G. and Hazboun, E., 2012. Enhancing Decision-Making Processes of Small Farmers in 
Tropical Crops by Means of Machine Learning Models. Technologies and Innovations for 
Development. Springer Paris, pp. 265-277. 
 
Schank, R., 2011. Experimentation. Edge.org. John Brockman. 
http://www.edge.org/q2011/q11_2.html  
 
Shamseldin, A.Y., 1997. Application of a neural network technique to rainfall-runoff modelling. 
Journal of Hydrology 199, 272-294. 
 
Shearer, J.R., Burks, T.F., Fulton, J.P., Higgins, S.F., 2000. Yield Prediction Using A Neural 
Network Classifier Trained Using Soil Landscape Features and Soil Fertility Data Annual 
International Meeting, Midwest Express Center. ASAE Paper No. 001084., Milwaukee, Wisconsin. 
 
Schultz, A., Wieland, R., 1997. The use of neural networks in agro-ecological modelling. 
Computers and Electronics in Agriculture 18, 73-90. 
 
Schultz, A., Wieland, R., Lutze, G., 2000. Neural networks in agro-ecological modelling- stylish 
application or helpful tool? Computers and Electronics in Agriculture 29, 73-97. 
 
Schulz, L.J., Storer, C.E., Murray-Prior, R. and Walmsley, T., 2001. Maintaining links with 
stakeholders in partnership extension models: Lessons learnt from TOPCROP West Australia 
http://regional.org.au/au/apen/2001/r/SchultzL.htm. 
 
Seginer, I., 1997. Some artificial neural network applications to greenhouse environmental control. 
Computers and Electronics in Agriculture 18, 167-186. 
 
Sora, D.S., Fischer, G. and Florez.R., 2006. Refrigerated storage of mora de castilla (Rubus 
glaucus) fruits in modified atmosphere packaging. Agronomia Colombiana 24 (2), 306-316. 
 
Spaans, E. and L. Estrada., 2004. Sense and nonsense of satellite navigaton for precision 
agriculture in the tropics. European Journal of Navigation 2, 71-76. 
 
StataCorp., 2005. Stata Reference Manual: Release 9. Stata Data Analysis Examples: Robust 
Regression., Stata Press, Texas, USA. 
 
Steckel, R.H., 1995. Stature and Standard of Living. Journal of Economic Literature 33, 1903-1940. 
 
Tafur, R., 2006. Propuesta frutícola para Colombia y su impacto en la actividad económica 
nacional, regional y departamental. In: Fischer, G.M., D; Piedrahita, W;Magnitskiy, S. (Ed.), 
Memorias primer congresocolombiano de horticultura., Unibiblos, Bogotá, pp. 47-66. 
 
Thomas, D., Strauss, J., Henriques., M., 1990. "Child Survival, Height for Age and Household 
Characteristics in Brazil.” Journal of Development Economics. 33, 197-234. 
 
Thompson, J. and Scoones, I., 1994. Challenging The Populist Perspective: Rural People's 
knowledge. Agricultural Research, And Extension Practice Agriculture and Human Values 11, 58-
76. 
 
Tien, B.T., van Straten, G., 1998. A NeuroFuzzy Approach to Identify Lettuce Growth and 
Greenhouse Climate. Artificial Intelligence Review 12, 71-93. 
 
Tomassone, R., Lesquoy, E., Miller, C., 1983. La regression : nouveaux regards sur une ancienne 
methode statistique., Paris. 

http://regional.org.au/au/apen/2001/r/SchultzL.htm


140 
 

 
Torres, J.S., 1998. A simple visual aid for sugarcane irrigation scheduling. Agricultural Water 
Management 38, 77-83. 
 
Torres, J.S., Cruz, V., R., and Villegas, T., 2004. Avances técnicos para la programación y el 
manejo del riego en caña de azúcar (TechnicalAdvances in irrigationprogamming in sugarcane). 
Technical Series CENICAÑA, Cali, Colombia 33, 39-44. 
 
Tourenq, C., Aulagnier, S., Mesleard, F., Durieux, L., Johnson, A., Gonzalez, G., Lek, S., 1999. 
Use of artificial neural networks for predicting rice crop damage by greater flamingos in the 
Camargue, France. Ecological Modelling 120, 349-358. 
 
Tuma, R.S., 2007. Statisticians set sights on observational studies. Journal of the National Cancer 
Institute 99, 664-668. 
 
Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Patel, R.M., 2005. Artificial 
neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. 
Computers and Electronics in Agriculture 47, 149-161. 
 
Van Asten, P.J.A., Kaaria, S., Fermont, A.M. and Delve, R.J., 2009. Challenges and lessons when 
using farmer knowledge in agricultural research and development projects in Africa. Experimental 
Agriculture 45, 1-14. 
 
Vellido, A., Lisboa, P. and Meehan, K., 1999. Segmentation of the on-line shopping market using 
neural networks. Expert Systems with Applications 17,303-314. 
 
Veronez, M.R., Thum, A.B., Luz, A.S., da Silva, D.R., 2006. Artificial Neural Networks applied in 
the determination of Soil Surface Temperature – SST. 7th International Symposium on Spatial 
Accuracy Assessment in Natural Resources and Environmental Sciences., Lisboa. 
 
Vesanto, J., 1999. “SOM-based data visualization methods”. Intelligent Data Analysis 3, 111-126. 
 
Vesanto, J. and Alhoniemi, E., 2000. Clustering of the Self-Organizing Map. IEEE Transactions on 
neural networks 11, 568-600. 
 
Vesanto, J., Ahola, J., 1999. Hunting for correlations in data using the selforganizing map.In: 
Proceedings of the International ICSC Congress on Computational Intelligence Methods and 
Applications (CIMA), pp. 279-285. 
 
Welch, J.R., Vincent, J.R., Auffhammer, M., Moya, P. and Dobermann, A., 2010 Rice yields in 
tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum 
temperatures. PNAS:www.pnas.org/cgi/doi/10.1073/pnas.1001222107. 
 
Yan, W., Hunt, L.A., Johnson, P., Stewart, G., Lu, X., 2002. On-Farm Strip Trials vs. Replicated 
Performance Trials for Cultivar. Crop Science 42, 385-392.  
 
Yan, W., Rajcan, I., 2003. Prediction of Cultivar Performance Based on Single- versus Multiple-
Year Tests in Soybean. Crop Science 43, 549-555. 
 
Yang, C.-C., Prasher, S.O., Landry, J.A., Ramaswamy, H.S., 2003. Development of an Image 
Processing System and a Fuzzy Algorithm for Site-Specific Herbicide Applications. Precision 
Agriculture 4, 5–18. 
 
Yao, X., Liu, Y., 1998. Making use of population information in evolutionary artificial neural 
networks,'. IEEE Transactionson Systems. Man Cybernetics 28, 417-425. 

http://www.pnas.org/cgi/doi/10.1073/pnas.1001222107


141 
 

 
Zaidi, M.A., Murase, H., Honami, N., 1999. Neural Network Model for the Evaluation of Lettuce 
Plant Growth. Journal of Agricultural Engineering Research 74, 237-242. 
 
Zee, F., Bubenheim, D., 1997. Plant Growth Model Using Artificial Neural Networks. 
 
Zhai, Y., Thomasson, J.A., Boggess III, J.E., Sui, R., 2006. Soil texture classification with artificial 
neural networks operating on remote sensing data. Computers and Electronics in Agriculture 54, 
53-68. 
 
Zhao, Z., Chow, T., L., Rees, H.W., Yang, Q., Xing, Z., Rui Meng, F., 2009. Predict soil texture 
distributions using an artificial neural network model. Computers and Electronics in Agriculture 65, 
36-48. 



142 
 

APPENDIX  
 
 

APPENDIX A1. 

 

RASTA 

(Rapid Soil and Terrain Assessment) 
 
 

A Practical Guide to the Characterization of Soils and Terrains 
 
 

 
CIAT - Corporación BIOTEC- Universidad Nacional 

 
 
 

James H. Cock 
Diana M. Álvarez 
Marcela Estrada 

 
 
This Guide is divided into two parts: a) Basic Soil Properties and field observations, and b) Inferred Soil 
Properties 
 
 

To start characterizing the soils on your farm 
 

Divide your farm into study sites  
 
Closely observe your plot or farm and divide it into units which are relatively uniform. This can be done by 
using your knowledge and experience on the farm and by using various indicators, for example, soil colour 
(if you find soils of different colours), soil type (if your soil is sandy, clayey, good, bad, poor, fertile, soft, or 
hard), slope and topography (if your land is flat or sloping), current use (if your land has a different use 
from plot to plot), crop development (if you observe differences in plant growth), natural vegetation, and 

any other differences that you have observed.  
 

 

Dig the soil profile hole  
 
In each selected unit, prepare a square “soil profile” hole according to the specifications indicated below.  
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However, if the area is very large, prepare several profile holes. Avoid making them near roadsides and plot 
edges, or in high parts.  
 
The holes should have the following measurements: 60 cm long × 60 cm wide × 70 cm deep. Note: If you 

are going to plant perennial crops such as fruit trees, then dig the holes 150 cm deep. 
 

 

 
 
Choose and evaluate the soil profile  
 
When you have finished making the soil profile hole, check its four faces, and select the one that is the most 
clearly seen (usually the one that is not in the direct sun). Take up your Guide and begin evaluating the soil 
profile. Do not forget that all results and the site’s data should be written in the Soil Records  

 
 

Part 1: Basic soil properties 
Slope 
 
Slope refers to the land’s inclination. It is related to the retention and movement of water, erosion, use of 
machinery, soil conservation, and the adoption of field practices such as irrigation and drainage.  
 

 

Step 1  
After constructing a simple “A” level, find the direction of the slope and open the two arms of the level to their 
fullest extent (1 meter). With one arm straight up the slope and the other straight down, allow the plumb line 
to come to a standstill.  
 
 
 



144 
 

 

 
 

 
Step 2 
Observe the value where the plumb line crosses the graduated ruler and note the result in Soil Record Sheet 
No. 1. Answer Sheet No. 1 
 
Land form 
 
The characteristics of the landscape influence soil properties and enable approximations of the most 
appropriate land use and management.  
 
Surrounding terrain 
 
Observe the landscape around you and compare it with the photos below. Identify the terrain around you and 
note your observations in Answer Sheet No. 1.  

 

 
Flat or plains: the land is completely flat; no surrounding mountains can be seen 
 

 

Undulating: the land has gentle slopes 
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Mountainous: large mountains are found all around you 
 

 

 
Undulating and mountainous: the land has both gentle slopes and mountains 
 
Profile’s landscape position 
 
Now describe the exact location of the spot where you are characterizing the soil. Compare the profile’s 
position in the landscape with the following photos and select accordingly. Note your observation in Answer 
Sheet No. 1.  
 
 

 

  
Tableland 
 

 

Summit 
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Convex slope 
 

 

Concave slope 

 

Flat slope 
 

 

Flat land 
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Flat land with undulations 

 

 
At the foot of a slope 
 
Determining horizons, colour, and texture 
 
Layers or horizons 
 
A horizon is a distinct layer that can be seen in a soil profile. Horizons are differentiated from each other by 
colour, texture, structure, or pedregosity (e.g., stoniness).  
 
You will need a tape measure and sticks to mark the limits of each horizon.  
 
 

 

 
 
 
 
 
 
Observe the four faces of the soil profile hole and selecting the one that has the horizons most clearly 
defined. This face becomes the SOIL PROFILE. Then: 

 

 Clean the chosen face with a clean machete or spade.  
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 Examine the face carefully and, in each place where a change of colour, texture, or structure is evident, 
mark it with a stick.  

 

 Number each layer and measure its thickness. Note the results in Answer Sheet No. 1.  

 

 
20 cm 16 cm 12 cm 24 cm 
 
Color 
 
 
Color indicates the soil’s fertility, moisture content, parental material, and drainage conditions. For example, 
black or dark colours represent high organic matter content; red colours, the presence of iron; whitish 
colours, the presence of carbonates; and olive, green, or gray colours, bad drainage.  
 
You will need a pencil and the attached colour chart. Then: 
 

 Observe the soil’s humidity: is it moist or dry?  
 

 Collect a lump of soil from each layer and stand with your back to the sun, preventing sunlight from 
falling directly on the lump.  

 

 Compare the soil with all the colours found in the following colour chart and select the most similar. If 
you find spots in the horizon, note the colour that predominates.  

 

 Write down the colour beside the respective horizon in Answer Sheet No. 1.  
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Color chart 

 

 

 

 
 
 
 
Texture 
 
Feeling the soil  
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Soil is characterized by diverse particles of matter, the most important of which are classified by size into, for 
example, sands, loams, and clays. Soil texture derives from the proportions in which each particle type is 
found in the soil. These proportions are expressed in percentages (%).  
 
Texture influences the retention and storage of oxygen and water; and soil fertility, porosity, and drainage, 
among other factors.  
 
Our fingers can easily distinguish between soils with different particle sizes: we can detect the rough feel of 
sand, the silky texture of a loam and the stickiness of clays.  
 
Preparing a sample 
Have at hand water, the attached textural key, and soil.  
 
Follow the steps indicated below, until you obtain the soil’s texture. Note your observations in Answer Sheet 
No. 1, using the letters that appear in parentheses, for example, for CLAY LOAM (CL), write “CL”. 
  
 
 
Step 1  
Collect an easy-to-manage handful of soil.  
 
 

 

 
Step 2 
Add a little water so that the soil can be easily kneaded. Avoid forming mud, which can be difficult to 
manage. If you have added too much water, then add a little more soil, and continue to knead.  
 

 

  
Step 3 
Knead the soil well until it forms a COMPLETELY HOMOGENOUS MASS, WITH NO LUMPS. Keep in mind 
that if the soil has lumps it cannot form rolls or circles.  
 
 
 
Textural key  
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Step 1 
Take a lump of soil, which is well moistened, and then place it between your hands and by rubbing them 
together try to form a soil worm, that is, a roll that is as thick as a pencil. Once you have formed a soil worm 
try to shape it into a circle like a donut without its breaking. If it is impossible to make soil worms moisten 
the soil more and try again. 
 
 
 

 

 
 

 The soil will not form a soil worm or the worm roll breaks on bending Go to Step 2 
 
 

 

 

 The soil forms a soil worm and does not break on bending, 
Go to Step 3 

 
Step 2 

 Try to form soil balls and worms. If the balls are lumpy or the worms crack or split on bending, 
Go to Step 4 

 

 It does not form balls or worms, 
Go to Step 5 

 
Step 3 
Take a small quantity of soil in the palm of your hand and add water. Rub the mixture with your index finger. 
If you feel that the soil is: 
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 Smooth and muddy, with some sand grains,  
Go to Step 13 

 

 Rough, with many sand grains, 
Go to Step 14 

 

 Soapy and very smooth; no visible sand grains, 
Go to Step 15 

 
Step 4 
Take a small quantity of soil in the palm of your hand and add water. Rub the mixture with your index finger. 
If you feel that the soil is:  
 

 

 
 

 Soapy and very smooth, with no grains of sand, 
Go to Step 6 

 

 Soft and you see some sand grains, 
Go to Step 7 

 

 Rough and you see many sand grains,  
Go to Step 10 

 
 
Step 5 
You see separate, loose particles that form unstable pyramids. The soil is not sticky and does not stain 
fingers. Separate grains of sand can be seen. The soil is therefore: 
 
 

 

 
SAND (S) 

 
 
 
 
Step 6 
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The soil feels silky, like talcum powder, and smooth, is easy to knead, appears opaque, stains the fingers, is 
not sticky, and, when kneaded, is buttery. The soil is therefore:  
 

 

 
 
 
 
 

SILT (Si) 
 
If your soil does not fit either description, return to Step 4 and try again.  

 
 

 

 
 
 
Step 7 
And as you rub the soil between your fingers (as if you were snapping fingers), it feels:  
 

 Smooth, silky, buttery, and very sticky,  
Go to Step 8 

 

 Soft, even if you observe and feel grains of sand.  
Go to Step 9 

 
  
 
Step 8 
And the soil is easy to knead, heavily stains your fingers, is sticky, and, when adding water and rubbing 
between your hands, you feel some grains of sand and on looking carefully you can see sand grains, then 
you have:  
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SILT LOAM (Sill) 

 
If your soil does not fit this description, return to Step 7 and try again.  

 
 
 
 

 

 
Step 9 
And the soil is also easy to knead, stains the fingers, is somewhat sticky, and, on adding water to a quantity 
of soil in the palm of your hand and rubbing it, you see and feel grains of sand, then you have:  
 

LOAM (L) 
 
If your soil does not fit this description, return to Step 7 and try again.  
 
 
Step 10 
Very carefully try to form small rolls or ribbons between the thumb and index finger and make observations. 
REMEMBER to clean your fingers before starting!  
 

 
 

 The soil forms very short ribbons that break very easily and are a little sticky, 
Go to Step 11 
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 The soil does not form ribbons and is not sticky, 
Go to Step 12 

 

 

 
 
Step 11 
And sand grains are also visible. The soil is easy to knead, stains your hands, feels both rough and talcum-
powdery, looks opaque, curls when you scratch it with your fingernail, and lumps crumble easily when moist. 
Your soil is a: 
 

SANDY LOAM (SL) 
 
If your soil does not fit this description, return to Step 10 and try again.  
 

 

 
Step 12 
And your soil is also very sandy and soft. It barely stains your hands, is opaque, and, when you add water 
and rub the soil with your hand, you feel and see many sand grains. The soil wrinkles when you scratch it 
with your fingernail, and crumbles easily when moist. The soil is therefore a:  
 

LOAMY SAND (LS) 
 

If your soil does not fit this description, return to Step 10 and try again.  
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Step 13 
And when you knead the soil, you feel some lumps; the soil heavily stains your hands; curls when you 
scratch it with your fingernail; and, when you leave it to dry, it feels like talcum powder, then you have a:  

 
CLAY LOAM (CL) 

 
If your soil does not fit this description, return to Step 3 and try again.  
 
 
 
 

 

 
Step 14 
And if your soil is not lumpy, but stains your hands; is somewhat sticky; curls when you scratch it with your 
fingernail; and, when moist, lumps crumble easily or with slight resistance, then you have a:  
 

SANDY CLAY (SC) 
 
If your soil does not fit this description, return to Step 3 and try again.  
 
Step 15 
When you knead the soil, and it feels: 
  

 Smooth and talcum powdery, 
Go to Step 16 

 

 Hard, smooth, and very soapy, 
Go to Step 17 
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Step 16 
And your soil also forms resistant and firm circles, heavily stains your hands, is very sticky, has a shiny 
surface, forms a smooth and shiny surface when you scratch it with your fingernail, and has a buttery 
consistency on kneading, then you have a:  
 

SILTY CLAY (SiC) 
 
If your soil does not fit this description, return to Step 15 and try again.  

 
 
 

 

 
Step 17 
And your soil is also hard to knead, easily forms circles, stains your fingers, is sticky, has a very shiny 
surface, and forms a smooth shiny surface when you scratch it with your fingernail, then you have a:  
 

CLAY (C) 
 
If your soil does not fit this description, return to Step 15 and try again.  
 
Soil acidity or alkalinity: pH  
 
pH ( potential of Hydrogen) ,measures the acidity (1–5), neutrality (5–7), or alkalinity (7 or higher) of soil. It 
influences the soil’s physical, chemical, and biological properties, and hence influences crop growth.  
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Materials:  
Box of indicator paper (e.g., Merck

®
, graduated from 0 to 14), soup spoon, two disposable glasses, and 

distilled or bottled water (without gas).  
 
Establish your soil’s pH as follows: 
 
 
 

 

 
  
Step 1 
Collect several samples from the top 30 cm of the profile and mix in a disposable glass. Do not touch the 
soil with dirty or sweaty hands.  
 

 

 
 
  
Step 2 
Add to one glass, ONE FLAT SPOONFUL OF SOIL from the sample previously described.  

 
 

 

 
Step 3 
Add ONE SPOONFUL of bottled or distilled water. Do not use tap water.  
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Step 4 
Stir for 1 minute, until a homogeneous mixture is formed.  
 
 

 

 
  
Step 5 
Introduce indicator paper into the mixture for 2 minutes or until the paper shows no further color change.  
 
 
 

 

  
Step 6 
If the strip remains very dirty, wash it with a little of the bottled water and do not touch the lower part of the 
strip with your fingers. Quickly compare the colours of the strip with those of the color chart and note 
accordingly in Answer Sheet No. 1. 
 
Carbonates 
 
The presence of high quantities of carbonates in the soil implies alkaline conditions (e.g., very high pH) and 
nutritional deficiencies. In dry climates, they can form very hard and dense horizons that prevent root growth, 
and thus crop growth.  
 
The materials you will need are one dropper (for safety), 10% HCl or muriatic acid (found at any drugstore), 
and whitish soil lumps.  
 

BE CAREFUL:  

THE REAGENT IS DANGEROUS AND MAY CAUSE SKIN BURNS 
REMEMBER TO ALWAYS USE IT WITH GREAT CARE 

STOPPER IT WELL WHEN YOU FINISH 
 
Follow these steps: 
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Step 1 
If the soil pH is greater than or equal to 7 and the soil profile is from an arid or dry area, search for and 
identify whitish stains in the profile.  
 
 

 

 
 
Step 2 
With a penknife or machete, scoop out some of the white soil, place to one side, and add some drops of the 
HCl or muriatic acid.  
 

 

 
 
Step 3 
Carefully observe and listen to any effervescence coming from the soil and compare your results with the 
following table. Note your results in Answer Sheet No. 1. 
 

Observation Interpretation 

Effervescence is not visible or audible The soil does not contain carbonates 
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Effervescence is slight, barely visible, but audible The soil presents low to very low contents of 

carbonates 
  
Effervescence is strong (many bubbles) but very 
brief 

The soil presents moderate levels of carbonates  

  
Effervescence is strong (many large bubbles) and 
forms a thick foam that lasts for some time 

The soil has a high content of carbonates 

 
In Answer Sheet No. 1, note the depth at which the first carbonates were found in the soil: _____ cm 
 
Pedregosity 
 
Pedregosity (stoniness) refers to the abundance of stones and rocks on the soil surface or in the soil itself. It 
influences infiltration, evaporation, and availability of water in the soil. It may also prevent plant growth or use 
of machinery.  
 
If you find pedregosity on your land, check whether you are dealing with stones or rocks, using the attached 
ruler and determining which predominates: 
 
 
 

 

  
Step 1 
To determine if you are dealing with stones or rocks, merely measure them, using the attached ruler.  
 
 
 

 

Step 2 
If the rocks or stones average less than 8 cm wide, then you have stones or gravel, but if their widths are 
more than 8 cm, then you have rocks.  
 
 
 
Surface stones or rocks 



162 
 

 

 
Look at the following drawings to determine the degree of surface pedregosity on your land. Note your 
observations in Answer Sheet No. 1. Mark the boxes with an “X”, as according to your situation. 
 
 
The stones or rocks do not interfere with cultivation tasks, or they are not present. 

 
 

 
      No stone  No rocks 
 
The stones or rocks interfere with cultivation tasks, but hand tools can be used.  

 

 
 

Stony  Rocky 
 
The stones or rocks do not permit the use of hand tools or agricultural machinery.  

 

 
 Very stony  Very rocky 
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Stones or rocks in the profile 
 

 

 
 
 
Mark the boxes with an “X”, as according to your situation.  

 

 

 
No stones No rocks 

 
The stones or rocks within the profile do not interfere with plant growth or with cultivation, or are absent.  

 
 
The stones or rocks within the profile hamper plant growth and cultivation tasks.  

 

 

 
Stony  Rocky 
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The stones or rocks within the profile prevent plant growth and use of hand tools or machinery.  

 
 

 

 
Very stony  Very rocky 

 
Depth at which the first rocks or stones are found: _____ cm  
 

 

 
 
Did you find a stony or rocky layer in the profile?  
 
Yes  No 

 
Depth: _____ cm  Thickness: ____ cm 
 
Note your observations in Answer Sheet No. 1.  
 
Hardpan layers 
 
Hardpan layers are hard impermeable layers that can prevent root growth, water movement, and soil 
aeration.  
 
You will need a penknife or knife and a tape measure. Carry out the following steps:  
 
 

 

 
  
Step 1 
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Place the tape measure on one face of the soil profile hole and, using the penknife or knife, strike the face 
with strong sharp blows at different points throughout the profile.  
 
 

 

 
  
Step 2 
Use your thumb to mark the depth to which the knife had penetrated the soil and then pull the knife out 
without moving your thumb.  
 
 

 

 
  
Step 3 

Measure how many centimetres the knife had penetrated the soil. If the distance was less than 3 cm, then 
you have a compacted layer. Note its depth and thickness.  
 
If you find several hard layers, note the depth and thickness of each one.  
 
Soil mottling 
 
Mottling comprises spots or stains of colours—yellow, red, blue, green, or gray—mixed with the color of the 
horizon in small or large quantities. They indicate poor drainage and a lack of oxygen for roots.  
 
The height of the water table is the depth measured from the soil surface at which groundwater is found. The 
height varies according to conditions such as amount of precipitation and soil drainage. When the water table 
is close to the surface, then swampy or waterlogged areas are formed.  
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Types of soil mottles: 
 
 

 

 

 

 

 

 

 

 
 
  
 
You will need a tape measure. Observe the profile and answer the following:  
 
Do you see soil mottling, collared brown, red, blue, gray, green, or yellow, in the profile?  
 
Yes  No 
 
If you answer Yes, then measure the depth, between the surface and mottling, as shown in the following 

photos:  
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58 cm  25 cm 
 
If you did not find mottling in the profile, answer the following questions and verify if the profile could present 
mottling at 70 cm or deeper. (Use the Procedure Sheet.) 
  

 Are there rivers or streams very close to the evaluation site?  
 

Yes  No  Don’t know 
 

 If you make a deep hole at any time of the year, does water come up?  
 

Yes  No  Don’t know 
 

 Are wells or aquifers found close to the plot?  
 

Yes  No  Don’t know 
 
At what depths? ________ m 
 

 
If you answer Yes to some or most of the above questions, the soil may present mottling at 70 cm or deeper 

because of high water tables. (Write down your response).  
 
Yes  No 
 
If you need to know the depth of the water table with greater accuracy to prevent it from interfering with crop 
growth, prepare a much deeper soil profile hole to 1.5 m.  
 
 
Soil resistance 
 
Soil resistance refers to the force needed to break a lump of soil. This force varies according to moisture 
content, texture, organic matter content, and soil structure. To test for resistance, follow the procedure below 
for each layer or horizon of the profile.  
 
Step 1  
To determine soil moisture, pick out a lump of soil and add a drop of water:  
 

 

 

 If the soil changes color, it is dry.  
 



168 
 

 
 If the soil does not change color and does not wet the hand on picking it up, then it is moist.  

 

 If the soil wets the hand on picking it up, then it is wet. In this case, let the soil dry until it is either moist 
or dry and continue with the evaluation.  

 
Step 2  
Go to the table on the next page and determine the soil’s resistance to breaking. Note your observations in 
Answer Sheet No. 1.  
 

 Resistance to breaking 

Dry soil 

Soft Hard Extremely hard 

On breaking a soil lump, large fragments remain that,  
when pressed together, cannot be joined again. 

The soil is loose 
and does not form 
lumps. When 
pressed between 
the thumb and 
index finger, it 
breaks very easily 
into powder or 
loose grains. 

  

The soil crumbles 
between the 
thumb and index 
finger only under 
considerable 
pressure, or both 
hands are 
needed.  

 

The soil cannot be 
crushed or broken 
between the 
fingers or with 
both hands, but 
does break when 
trodden underfoot 
or hit with a stone, 
or hammer.  

 

 

Moist soil 

 

Friable Firm Extremely firm 

On breaking the lump, the particles join again when pressed together. 

The soil is loose 
or crumbles easily 
between thumb 
and index finger. 

 

The soil crumbles 
between thumb 
and index finger, 
using moderate 
pressure. Clear 
resistance is 
noted. 

 

The soil crumbles 
only under very 
strong pressure 
and must be 
broken piece by 
piece. 

 

 

Plastic 

(moist) 

Plastic Highly plastic 

When you use pressure, the lump does not separate but becomes deformed;  
it can also be MOLDED. 

You need moderate pressure to deform a lump of soil. You need considerable pressure to deform a lump of soil. 

 
Soil structure 
 
Soil structure is the organization of soil lumps or aggregates (themselves formed of soil minerals and organic 
matter) and the network of pores between them.  
 
A poor soil structure may negatively affect plants through factors such as excess or deficiency of water, lack 
of aeration, little microbial activity, prevention of root growth, incidence of diseases, and bad drainage.  
 
To clearly see the soil structure, the soil profile should be allowed to dry in the sun until natural cracks 
appear in the soil.  
 
If the soil is moist and its structure is evident, compare it with the following photos to identify it and write 
down your results in Answer Sheet No. 1. If you observe various different structures, note the most 
prominent.  
 
With structure 
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Granular: Often found on the surface as small round grains that, when scooped up, are loose.  

 
 

 

Blocky: Irregular blocks that may have rounded or straight edges.  
 

 

Prismatic: When the soil is dry, vertical cracks are observed. They are usually found in deeper horizons or 

layers.  
 

 

 
 
Columnar: The soil forms a compact or hard mass that breaks into columns with rounded edges which 

water cannot penetrate. This structure is commonly found in deeper layers of sodic soils.  

 

Platy: Smooth plates are found in the soil surface (crusts) or in the profile as overlapping plates of soil.  
Photos and drawings from Soil Characterization Protocol Field Guide of the GLOBE Program 

 
No structure 
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Single grained: The soil does not form lumps but feels loose and dusty, like sand.  
 

 

 
Massive: The soil does not have a visible structure: no cracks are seen and the soil appears as a solid 

shapeless mass that is very difficult to break.  
 
You have come to the end of the first part of the Guide. All the descriptions you made should be noted in 
Answer Sheet No. 1 (see Answer Booklet).  
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Use Answer Sheet No. 1 to respond to the following 14 field observations: 
 
 
Can you see erosion in the soil?  
 

 

Yes  No 
 

 
Can you see mold or greenish layers on the soil surface?  
 

 

 Yes  No 
 
 
Can you see hard or crunchy crusts on the soil surface?  
 

 

 

 
Very marked  Not strongly marked  Absent 
 
 
 
The sampling site is exposed to the sun in the:  
 
Morning and afternoon  Morning   Afternoon 
 
 
 
Do you see white or peeling crusts?  
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Very marked  Not strongly marked  Absent  
 
 
Do you see black crusts on the soil surface?  
 

 

 
 
 
Very marked  Not strongly marked Absent 
 
 
 
Are you in a dry or arid region where it rarely rains, or in a humid region near the sea or salt lakes?  
 
 

 

 
 
Yes  No 
 
 
 
 
 
 
 
 
 
 
 
 
Do you see live roots in the profile?  
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Yes  No 
 
Depth of root growth: ___________ cm 
 
 
Do you observe small dry plants, or low production in the crop?  
 

 

 
Plants mildly affected Plants strongly affected  Normal plants No crop 
 
 
Do you see a lot of fallen leaves or decaying organic matter on the soil surface?  
 
Yes  No 
 
Is the soil is very black, very soft, spongy, and, when you walk on it, you sink?  
 
Yes  No 
 
When you introduce a knife into the first horizon, does it enter easily?  
 
Yes  No  
 
Are you near rivers, streams, seas, lakes, or wells that maintain groundwater levels close to the surface?  
 
Yes  No 
 
The soil’s plant cover such as grasses, weeds or mosses is:  
 
Very good (abundant) Good (normal) Regular (covers almost half of the plot) 
Spaced out (patches) No cover 
 
 
 
 
You have come to the end of the second part of the Guide. All the descriptions you made should be noted in 
Answer Sheet No. 1  
 
 
Answer Sheet No. 1: 
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Answer Sheet No. 2: 
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Part 2: Inferred soil properties 
 

 
With ALL the answers for Parts 1 written down in Answer Sheet No. 1, you can now infer various important 
soil properties including:  
 

 Effective depth 

 Organic matter 

 Drainage 

 Salinity and sodicity 
 
Follow the steps described below. To help with your determinations, use the Procedures Sheet attached to 
the Guide.  
 
Note: If you have followed the guide carefully and recorded all the observations, the following steps can be 

made in your house or office.  
 
Effective depth 
 
Effective depth is the depth to which plant roots can reach in a soil without meeting obstacles (whether 
physical or chemical) such as the water table, hardpan, loose sands, impermeable clays, or presence of 
salts.  
 
Effective depth is one of the most important properties to take into account when deciding which crop to 
plant, as optimal root growth and good crop development depend on effective depth. To determine this 
depth: 
 
Step 1 
 
 Go to the following table and write down the depth at which different obstacles were found (use the 
Procedures Sheet).  
 
Step 2  
If you do not find any obstacle in your soil profile, draw a line through the corresponding blank space (use 
Answer Sheet No. 1).  
 
 

If you found:  Depth 

Hardpan layers in the profile; note their depth (Item 7 in Answer Sheet No. 1)  
(If you find several, note the first one) 

 

  

Mottling in the profile; note its depth (Item 8 in Answer Sheet No. 1)   

  

High carbonate contents in the profile; note the depth at which they appear (Item 5 in Answer 
Sheet No. 1) 

 

  

A sandy horizon; note its depth (Item 3 in Answer Sheet No. 1)   

  

Stony or rocky layers; note their depths (Item 6 in Answer Sheet No. 1)   

  

Very stony or rocky profile; note the depth at which rocks or stones first appear (Item 6 in Answer 
Sheet No. 1)  

 

  

Very stony or rocky soil surface; note a minimum depth of 0 cm  

  

Massive or platy structures; note a minimum depth of 0 cm  

 
Step 3  
To determine effective depth, make the following calculations and write your results in Answer Sheet No. 2:  
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 If none of the options listed in the table correspond to your soil profile, the effective depth will be the 
same as or greater than the depth of the profile hole (note your results in Answer Sheet No. 2).  

 

 If some or all of the obstacles listed in the table appear, choose the shallowest depth (e.g., nearest to the 
soil surface or minimum depth):    

 
Minimum depth: ______ cm (depth 1) 
Root depth (Item 17 in Answer Sheet No. 1): _____ cm (depth 2)   
 
Compare these two results as shown below and note the effective depth in Answer Sheet No. 2.  
      

 If depth 1 is greater than depth 2, then the effective depth will be equal to depth 1.  
 

 If depth 1 is less than depth 2, then the effective depth will be equal to depth 2.  
 

 If no roots are present, then the effective depth is equal to the minimum depth.   
 
Organic matter 
 
Organic matter is a significant component of soil because it influences the soil’s chemical, physical, and 
biological properties. It improves soil structure and porosity, moisture retention, microbial activity, and soil 
fertility, among other attributes. To characterise organic matter:  
 

 Go to Step 1, read the question, and select the option that best describes your soil’s condition (use 
Answer Sheet No. 1).  

 

 Each option will lead you to another step until the level of organic matter corresponds to your soil (note 
your results in Answer Sheet No. 2).  

 
Step 1 
 See Answer Sheet No. 1, Items 3, 8, and 20. On describing the horizon, you found: 

 

 Your soil is very dark, very soft, loose, spongy, and sinks underfoot, 
Go to Step 2 

 

 Textures are light (SL, LS, or S), soil colours are dark (identified in color chart by numbers 1, 2, 3, 4, 5, 6, 
14, 15, 16, 17, 18, 19, 20, 22, 24, 28, 31, and 32), and no mottling is present, 
Go to Step 3 

 

 Textures are light (SL, LS, or S), soils are of any color, and some mottling is present, 
Go to Step 4 

 

 Textures are intermediate (L, SC, Si, or SiL), soils are dark (color numbers 1, 2, 3, 4, 5, 14, 15, 16, 17, 
18, 19, 20, 22, 24, 28, 31, and 32), and no mottling is present, 
Go to Step 5 

 

 Textures are heavy (CL, C, or SiC), soils are dark (color numbers 1, 2, 3, 4, 5, 14, 15, 16, 17, 18, 19, 20, 
22, 24, 28, 31, 32, and 43), and no mottling is present, 
Go to Step 6 

 

 Textures are either intermediate or heavy (L, SC, Si, SiL, CL, C, or SiC), soils are of any color, and 
some mottling is present, 
Go to Step 7 

 
Step 2 
With Answer Sheet No. 1 in your hand, answer the following questions. Use the Procedures Sheet.  
 

Questions (select your answer, writing “X” in the box) Yes No 
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Did you see a lot of fallen leaves or decaying organic matter? (Item 19)   

   

When you introduced the knife into the first horizon, did it enter easily? 
(Item 21) 

  

   

Did you find an extremely acid pH? (Item 4)   

   

Is your soil’s internal drainage either slow or very slow?    

 

 If you responded “No” to any of the four questions, return to Step 1 and try again.  
 

 If you answered “Yes” to ALL four questions, then your soil is ORGANIC. You can determine the level of 
organic matter content in your soil by its resistance to breakage (Item 3 of Answer Sheet No. 1), 
structure, and drainage. Go to Step 3.  

 
 

Step 3 
The soil feels: 
 

 Friable when humid, soft when dry, and also very spongy and porous, 
Organic matter content is therefore high 

 

 Firm or friable when humid and hard or loose when dry, 
Organic matter content is therefore intermediate 

 
If your soil does not fit either description, return to Step 1 and try again.  
             
Step 4 
See Item 3 of Answer Sheet No. 1. Observe the color of your soil and its resistance to breakage:  
 

 Soils with no mottling; colours are dark coffee, brown, or yellowish coffee (color numbers 16, 17, 18, 19, 
20, 22, 24, 25, 26, 27, 28, 33, 34, 35, and 36). On crumbling, soil feels friable when humid or soft when 
dry; and also porous and spongy, 

Organic matter content is therefore intermediate 
 

 Soils may have mottling; usually dark coffee, yellowish coffee, brown, and sometimes black in color 
(color numbers 1, 2, 3, 4, 5, 6, 7, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 32, 35, and 36). 
On crumbling, the soils feel friable or firm when humid, 

Organic matter content is therefore low 

 

 The soil may have mottling; usually gray, red, yellow, and orange in colours (color numbers 8, 9, 10, 
11, 12, 13, 18, 21, 23, 27, 29, 30, and 34 to 54). The soil feels loose when dry, that is, very sandy and 
rough, 

Organic matter content is therefore low 

 
If your soil does not fit any of these descriptions, return to Step 1 and try again.  

 
Step 5 
See Item 3 of Answer Sheet No. 1. Soil feels:  
 

 Friable when humid; soft, hard, or extremely hard when dry; and also spongy and porous,  
Organic matter content is therefore very high 

 

 Firm or plastic when humid and hard and extremely hard when dry, 
Organic matter content is therefore intermediate 

 
If your soil does not fit either description, return to Step 1 and try again.  
 
Step 6 
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See Item 3 of Answer Sheet No. 1. Soil feels: 
 

 Friable when humid; soft, hard, or extremely hard when dry; and also spongy and porous, 
Organic matter content is therefore low 

 

 Firm or plastic when humid and hard or extremely hard when dry, 
Organic matter content is therefore intermediate 

 
If your soil does not fit either description, return to Step 1 and try again.  
 
Step 7 
See Item 3 of Answer Sheet No. 1. Define the color and describe the horizon’s or layer’s resistance to 
breakage:  
 

 Soil with no mottling and colored dark coffee, brown, or yellowish coffee (color numbers 15, 16, 17, 18, 
19, 20, 22, 24, 25, 26, 27, 28, 33, 34, 35). On crumbling, the soil feels friable, firm, or plastic when 
humid; or soft, hard, and extremely hard when dry, 

Organic matter content is therefore intermediate 

 

 Soil may present mottling, and be of any color and shade from pale to dark. On crumbling lumps, the 
soil feels friable, firm, or plastic when humid and hard or extremely hard when dry, 

Organic matter content is therefore low 

 
If your soil does not fit either description, return to Step 1 and try again. 
 
Drainage 
 
 
Drainage is the capacity the soil has to get rid of water by surface runoff and infiltration. 
  
Drainage can affect the growth and development of most crops, modifying factors such as effective depth, 
soil structure, microbial activity (both good and bad), availability of oxygen and plant nutrients, soil pH, 
concentration and solubility of certain elements, and decomposition of organic matter. To characterise the 
soil’s internal drainage: 
 

 Go to Step 1 of Key 1 below and select the option that most fits your soil’s condition (use Answer Sheet 
No. 1).  

 

 Each option leads to another step, until the class of drainage of your soil appears.  
 

 Note your answer in Answer Sheet No. 2.  
 
Follow the same procedure to describe the soil’s external drainage (Key 2).  
 
Key 1: Internal drainage  

 
Refers to infiltration or the passage of water through soil.  
 
Step 1 
Do you find mottling in the profile?  
 
At what depth?  
 
(Item 8 in Answer Sheet No. 1).  
 

 Mottling appears at a depth of less than 50 cm, 
Go to Step 2 

 

 No mottling appears, or it appears at a depth of more than 50 cm, 
Go to Step 3 
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Step 2 
Carefully read the descriptions presented below and select the option that MOST resembles the condition of 

your soil: 
  

 It is found near rivers, streams, seas, lakes, or wells, or at the bottom of slope that maintains 
groundwater levels close to the surface and prevents the passage of water through the profile.  

Drainage is therefore slow to very slow 
 

 Organic soils or soils with limitations close to the surface or on the surface. Obstacles appear in the 
profile such as clayey horizons with or without pedregosity, hardpan or impermeable layers, high 
sodicity, and massive and nonporous structures that block the passage of water through the profile. 

Drainage is therefore slow to very slow 

 

 If mottling is at a depth of less than 50 cm, but your soil does not fit either description, then it may 
have been modified and its internal drainage has improved. If this is the case, go to Step 3. 

 
Step 3 
Carefully read the descriptions presented below and select the option that MOST resembles the condition of 

your soil:  
 

 The soil may or may not present mottling deeper than 50 cm. The first horizons usually have loamy 
textures (L, LC, SiL, or CS), and limitations may be deep within the profile. Soil structure is good (neither 
loose nor massive) and porous:   

Drainage is therefore good 

 

 The soil does not present mottling. It is usually sandy in texture (LS, SL, and S), loose in structure; it 
may or may not present stones of different grades, has good porosity, and does not present limitations:  

Drainage is therefore excessive 
 
If the soil does not fit either description then return to Step 1 and try again.  

 
Key 2: External drainage  
 
Refers to surface runoff. 
 
Step 1 
How steep is the land? (Item 1 of Answer Sheet No. 1) 
 

 0% to 2% ...................... Go to Step 2 

 2.1% to 6% ................... Go to Step 3 

 6.1% to 13%.................. Go to Step 4 

 More than 13%.............. Go to Step 5 
 
Step 2 
The water only moves through the soil profile. The water either forms puddles on the surface or infiltrates 
rapidly through the soil: 
 

Drainage is absent  
 
Step 3 
The soil usually has good plant cover, comprising grasses, weeds, r mosses. Its internal drainage is good, 
and the soil surface is not eroded:  

 
Drainage is therefore slow 

 
Step 4 

 The soil’s internal drainage is excessive. The soil surface is not eroded: 
Drainage is therefore slow 
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 The soil’s internal drainage is good. Plant cover is good, comprising grasses, weeds, lawns, or mosses. 
The soil surface is not eroded:  

Drainage is therefore good 

 

 The soil’s internal drainage is good. Plant cover, comprising grasses, weeds, lawns, or mosses is spaced 
out, regular, or absent. The soil surface may be eroded: 

Drainage is therefore moderate 

 

 The soil’s internal drainage is slow to very slow. Plant cover is good or absent. The soil surface may be 
eroded: 

Drainage is therefore moderate 
 
Step 5 

 The soil surface is not eroded. Internal drainage is good or excessive. Plant cover is good, comprising 
grasses, weeds, lawns, or mosses:  

Drainage is therefore moderate 

 

 The soil is usually eroded. Plant cover is spaced out. Internal drainage is slow or very slow. Stones or 
rocks may be present on the surface:  

Drainage is therefore excessive 
 
 

 
Salinity and sodicity 
 
Salinity and sodicity refer to the soil’s salt concentration levels, which may limit plant growth. If the soil has 
high concentrations of salts, it is saline. If sodium salts predominate, then the soil is sodic.  
 
Excess sodium salts cause large changes in various physical, chemical, and biological properties of the soil, 
including organic matter; drainage; pH; structure; and availability of nutrients, water, and oxygen. 
 
 
 

 

 
Salinity 
 
Use Answer Sheet No. 1 and Procedures Sheet. If your soil and terrain present following conditions: 

 

 The profile is located in flat or flat and mildly undulating land, where slopes range between 0% and 2% 
(Items 1 and 2) 

 

 White or peeling crusts can be seen (Item 14) 
 

 The pH is between 7 and 8 (Item 4) 
 

 The location is in a dry or arid region where rain rarely falls, or in a humid region close to the sea or salt 
lakes (Item 16) … 
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... and these conditions coincide with two or more of the following conditions: 
 

 The soil has hard or crunchy crusts (Item 12) 
 

 Crop plants are small and parched, or their production is low (Item 18) 
 

 Internal drainage is good or excessive (Answer Sheet No. 2, Item 4) 
 

 The soil is extremely hard or firm, 
  
… then your soil is saline. 
 
To evaluate the level of salinity, check effects on susceptible plants cultivated in the area. Compare the 
following descriptions with your plot’s situation and identify that which most resembles your soil’s condition.  

 

 

 Salinity is low when crusts and cracks are not readily observed, and effects on developing susceptible 
plants are mild.  

 

 
 

 Salinity is high when crusts and cracks are highly noticeable and plants are either severely 
affected or do not grow.  

 
Sodicity 
 
Use Answer Sheet No. 1 and Procedures Sheet. If your soil and terrain present the following conditions: 

 

 Black crusts are found in the soil (Item 15) 
 

 Internal drainage is slow to very slow (Item 1 of Answer Sheet No. 2)  
 

 The pH is more than 8 (Item 4) … 
    
... and these conditions coincide with two or more of the following conditions: 
 

 The soil is soft or friable 
 

 A very hard crust is present on the surface and the top 20–30 cm of soil has a muddy, moist, and very 
smooth consistency 

 

 Soil structure is prismatic or columnar, 
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… then your soil is sodic. 
 
To discover the level of sodicity in your soil, check the effects on susceptible plants grown in the area. Select 
the description that most resembles your soil’s condition:  
 

 Sodicity is low when black crusts are not readily evident and effects on developing susceptible plants 
are mild.   

 

 Sodicity is high when the black crusts are highly noticeable and plants are severely affected or do not 
grow.  

 
You have come to the end of the Guide. All the descriptions you made should be noted in Answer Sheet No. 
1 and 2  
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APPENDIX A2.  
Guide form based on a calendar used by the farmers to record information on the production of each plot planted to Andean blackberries and lulo. 
 

 
Guide form for Andean blackberry developed to capture information describing each production site (producer, identification, location, planting date and spacing, number of 

plants), and variety (thorned or thornless) 
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Calendar for Andean blackberry developed to capture harvest events. Data was actual weights of fruit harvested per plant each week 
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Guide form for lulo developed to capture information describing each production site (producer, location, identification, planting date and spacing, number of plants), and 
variety (thorned or thornless) 
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Calendar of lulo developed to capture harvest events. Data was actual weights of fruit harvested per plant each week 
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APPENDIX A3.  
MATLAB scripts language, used to train a Kohonen map, cluster prototypes, visualize 
dependencies, and visualize the bidimensional map and dependencies between clusters. In red, 
the parameters that should be modified. Expressions between % and bold are expressions used to 
describe each process. 
 
To train the Kohonen map. 
 
sD = som_read_data (‘filename.data') 
 
sD = som_normalize(sD,'var') 
 
som_gui(sD) 
 
 
%%In the initialization training window%%%:  
 
initialize/train/Load/save/Save Map/Save in workspace/Save map as = sM /close 
 
 
To visualize the bidimensional map 
 
som_show(sM,'umat','all'); 
 
 
To cluster vector prototypes through the K-means algorithm and the Davies-Bouldin index  
 
%%% To create a file with the BMUS asociated to the input vectors%%%%% 
  
 Bmus = som_bmus(sM,sD); 
 
%%% Sort BMUs %%% 
%%% Bmus = sort(Bmus); 
%%% SDd = data denormalized %%% 
 sDdn = som_denormalize(sD); 
 sDda = sDdn.data; 
 sBMUs = [Bmus,sDda] 
 
 
%%% Clustering with k-means with different values for k. %%% 
%%% The Davies-Bouldin index is calculated for each clustering. %%% 
 
figure(7); 
 subplot(1,2,1) 
 [c,p,err,ind] = kmeans_clusters(sM,number of k values to test); 
 plot(1:length(ind),ind,'x-'); 
 
%%% choosing the clustering with the minimal Davies-Bouldin index %%% 
 [dummy,i] = min(ind); 
 
%%% cl = "cluster number" %%% 
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 cl = p{i};  
 %cl = p{40};  
 figure(7); 
 subplot(1,2,2); 
  
 som_cplane(sM,cl); 
 ClNum = i; 
 
 
figure(8) 
 som_show(sM,'color',cl); 
 som_show_add('label',sM,'Textsize',8,'subplot',1); 
  
 
figure(9) 
 som_cplane(sM,cl); 
 hold on 
 som_grid(sM,'Label',cellstr(int2str(cl)),... 
'Line','none','Marker','none','Labelcolor','k'); 
  
 
%%% To assing a cluster number to each input vector %%% 
 for i=1:size(Bmus), ; 
 clBM(i) = [cl(Bmus(i),:)] ; 
 end ; 
 clBMU = clBM'  
 
%%% To save the clusters%%% 
 
cc = clBM'; 
 save cluster_number.data cc -ASCII -tabs 
 
 
To visualize the dependencies between the clusters shown in the Kohonen map by a 
“component plane” representation 
 
%%%To show as much component planes as dimensions or variables are available to 
visualize%%%% 
 
 
som_show(sM,'umat','all','comp',1: the number in the dataset of the last variable or column to 
see as a component plane ,'empty','Labels','norm','d') 
 
%%% To show only one component plane%%% 
 
som_show(sM,'umat','all','comp',the number of the component plane to visualize 
,'empty','Labels','norm','d') 
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